Show simple item record  

dc.contributor.authorJung, Yoonsuhen_NZ
dc.date.accessioned2016-05-05T23:28:50Z
dc.date.available2016-04-05en_NZ
dc.date.available2016-05-05T23:28:50Z
dc.date.issued2016-04-05en_NZ
dc.identifier.citationJung, Y. (2016). Shrinkage Estimation of Proportion via Logit Penalty. Communications in Statistics - Theory and Methods. http://doi.org/10.1080/03610926.2015.1048881en
dc.identifier.issn1532-415Xen_NZ
dc.identifier.urihttps://hdl.handle.net/10289/10182
dc.description.abstractBy releasing the unbiasedness condition, we often obtain more accurate estimators due to the bias-variance tradeoff. In this paper, we propose a class of shrinkage proportion estimators which show improved performance over the sample proportion. We provide the “optimal” amount of shrinkage. The advantage of the proposed estimators is given theoretically as well as explored empirically by simulation studies and real data analyses.en_NZ
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.publisherTaylor & Francisen_NZ
dc.subjectBiased estimatoren_NZ
dc.subjectPenalization
dc.subjectSample proportion
dc.subjectShrinkage proportion estimator
dc.titleShrinkage Estimation of Proportion via Logit Penaltyen_NZ
dc.typeJournal Article
dc.identifier.doi10.1080/03610926.2015.1048881en_NZ
dc.relation.isPartOfCommunications in Statistics - Theory and Methodsen_NZ
pubs.elements-id138566
pubs.publisher-urlhttp://www.tandfonline.com/doi/full/10.1080/03610926.2015.1048881en_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record