Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Building ensembles of adaptive nested dichotomies with random-pair selection

      Leathart, Tim; Pfahringer, Bernhard; Frank, Eibe
      Thumbnail
      Files
      accepted-version-adaptive nested dichotomies.pdf
      Accepted version, 249.2Kb
      DOI
       10.1007/978-3-319-46227-1_12
      Find in your library  
      Citation
      Export citation
      Leathart, T., Pfahringer, B., & Frank, E. (2016). Building ensembles of adaptive nested dichotomies with random-pair selection. In P. Frasconi, N. Landwehr, G. Manco, & J. Vreeken (Eds.), Proceedings of Joint European Conference on Machine Learning and Knowledge Discovery in Databases (Vol. Part II, LNAI 9852, pp. 179–194). Cham, Switzerland: Springer. http://doi.org/10.1007/978-3-319-46227-1_12
      Permanent Research Commons link: https://hdl.handle.net/10289/10767
      Abstract
      A system of nested dichotomies is a method of decomposing a multi-class problem into a collection of binary problems. Such a system recursively applies binary splits to divide the set of classes into two subsets, and trains a binary classifier for each split. Although ensembles of nested dichotomies with random structure have been shown to perform well in practice, using a more sophisticated class subset selection method can be used to improve classification accuracy. We investigate an approach to this problem called random-pair selection, and evaluate its effectiveness compared to other published methods of subset selection. We show that our method outperforms other methods in many cases when forming ensembles of nested dichotomies, and is at least on par in all other cases. The software related to this paper is available at https://svn.cms.waikato.ac.nz/svn/weka/trunk/packages/ internal/ensemblesOfNestedDichotomies/.
      Date
      2016
      Type
      Conference Contribution
      Publisher
      Springer
      Rights
      This is an author’s accepted version of an article published in the Proceedings of Joint European Conference on Machine Learning and Knowledge Discovery in Databases. © Springer International Publishing AG 2016.
      Collections
      • Computing and Mathematical Sciences Papers [1455]
      Show full item record  

      Usage

      Downloads, last 12 months
      96
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement