Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      From opinion lexicons to sentiment classification of tweets and vice versa: a transfer learning approach

      Bravo-Marquez, Felipe; Frank, Eibe; Pfahringer, Bernhard
      Thumbnail
      Files
      Accepted-version-transfer_wi.pdf
      Accepted version, 229.6Kb
      DOI
       10.1109/WI.2016.29
      Find in your library  
      Citation
      Export citation
      Bravo-Marquez, F., Frank, E., & Pfahringer, B. (2016). From opinion lexicons to sentiment classification of tweets and vice versa: a transfer learning approach. In Proceeding of the 2016 IEEE/WIC/ACM International Conference on Web Intelligence, Omaha, Nebraska, USA, 13-16 October, 2016.(pp. 145–152). Los Alamitos, CA, USA: IEEE Computer Society. http://doi.org/10.1109/WI.2016.29
      Permanent Research Commons link: https://hdl.handle.net/10289/10782
      Abstract
      Message-level and word-level polarity classification are two popular tasks in Twitter sentiment analysis. They have been commonly addressed by training supervised models from labelled data. The main limitation of these models is the high cost of data annotation. Transferring existing labels from a related problem domain is one possible solution for this problem. In this paper, we propose a simple model for transferring sentiment labels from words to tweets and vice versa by representing both tweets and words using feature vectors residing in the same feature space. Tweets are represented by standard NLP features such as unigrams and part-of-speech tags. Words are represented by averaging the vectors of the tweets in which they occur. We evaluate our approach in two transfer learning problems: 1) training a tweet-level polarity classifier from a polarity lexicon, and 2) inducing a polarity lexicon from a collection of polarity-annotated tweets. Our results show that the proposed approach can successfully classify words and tweets after transfer.
      Date
      2016
      Type
      Conference Contribution
      Publisher
      IEEE Computer Society
      Rights
      This is an author’s accepted version of an article published in the Proceeding of the 2016 IEEE/WIC/ACM International Conference on Web Intelligence. © 2016 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
      Collections
      • Computing and Mathematical Sciences Papers [1455]
      Show full item record  

      Usage

      Downloads, last 12 months
      98
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement