Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Hybrid-heating-systems for optimized integration of low-temperature-heat and renewable energy

      Schumm, Gregor M.; Philipp, Matthias; Schlosser, Florian; Hesselbach, Jens; Walmsley, Timothy Gordon; Atkins, Martin John
      Thumbnail
      Files
      2016 schumm philipp schlosser hesselbach walmsley atkins Chemical Engineering Transactions.pdf
      Published version, 1.771Mb
      DOI
       10.3303/CET1652182
      Find in your library  
      Citation
      Export citation
      Schumm, G. M., Philipp, M., Schlosser, F., Hesselbach, J., Walmsley, T. G., & Atkins, M. J. (2016). Hybrid-heating-systems for optimized integration of low-temperature-heat and renewable energy. Chemical Engineering Transactions, 52, 1087–1092. https://doi.org/10.3303/CET1652182
      Permanent Research Commons link: https://hdl.handle.net/10289/10852
      Abstract
      The food and beverage industries are significant industrial producers of green-house gas (GHG) emissions. Reductions can be achieved by increased energy efficiency and the use of renewable energy to replace fossil fuel use. The main efficiency method within this industries is the use of low temperature heat (LTH), i.e. below 100 °C. Sources for LTH include heat recovery from process flows, heat rejection from utility operations (i.e. chillers, combined heat and power (CHP), condensing economisers), and renewable energy (i.e. solar thermal). A hybrid heating system (H2S) has been developed that can retrofit steam heater designs for the integration of LTH. Two different systems have been found, for adapting direct and indirect steam heaters, either installing an extra hot water heater or using the indirect hot water loop for the integration. In both systems the existing steam heater remains a part of the system for individual back-up. The set-up and the control algorithm of the H₂S allow installing a 37 % smaller hot water grid than a common design with one central back-up heater. Investigations using a comprehensive model of a whey separation and drying plant showed that implementing a piston engine CHP unit combined with the H₂S reduce the energy costs by 42 % and the GHG emissions by 33 %.
      Date
      2016
      Type
      Journal Article
      Publisher
      AIDIC
      Rights
      Copyright © 2016, AIDIC Servizi S.r.l.. Used with permission.
      Collections
      • Science and Engineering Papers [3122]
      Show full item record  

      Usage

      Downloads, last 12 months
      59
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement