Show simple item record  

dc.contributor.authorMitchell, R. Scott
dc.date.accessioned2008-10-21T00:03:29Z
dc.date.available2008-10-21T00:03:29Z
dc.date.issued1995-05
dc.identifier.citationMitchell, S. (1995). The application of machine learning techniques to time-series data. (Working paper 95/15). Hamilton, New Zealand: University of Waikato, Department of Computer Science.en_US
dc.identifier.issn1170-487X
dc.identifier.urihttps://hdl.handle.net/10289/1092
dc.description.abstract"Knowledge discovery" is one of the most recent and fastest growing fields of research in computer science. It combines techniques from machine learning and database technology to find and extract meaningful knowledge from large, real world databases. Much real world data is temporal in nature, for example stock prices, dairy cow milk production figures or meteorological data. Most current knowledge discovery systems utilise similarity-based machine learning methods "learning from examples" which are not in general well suited to this type of data. Time-series analysis techniques are used extensively in signal processing and sequence identification applications such as speech recognition, but have not often been considered for knowledge discovery tasks. This report documents new methods for discovering knowledge in real world time-series data. Two complementary approaches were investigated: 1) manipulation of the original dataset into a form that is usable by conventional similarity-based learners; and 2) using sequence identification techniques to learn the concepts embedded in the database. Experimental results obtained from applying both techniques to a large agricultural database are presented and analysed.en_US
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.publisherUniversity of Waikato, Department of Computer Scienceen_US
dc.relation.ispartofseriesComputer Science Working Papers
dc.subjectcomputer scienceen_US
dc.titleThe application of machine learning techniques to time-series dataen_US
dc.typeWorking Paperen_US
uow.relation.series95/15


Files in this item

This item appears in the following Collection(s)

Show simple item record