Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Constellations and their relationship with categories

      Gould, Victoria; Stokes, Tim E.
      Thumbnail
      Files
      constplainsubmitted.pdf
      Submitted version, 313.3Kb
      DOI
       10.1007/s00012-017-0432-5
      Find in your library  
      Citation
      Export citation
      Gould, V., & Stokes, T. E. (2017). Constellations and their relationship with categories. Algebra Universalis, FirstView, 1–34. https://doi.org/10.1007/s00012-017-0432-5
      Permanent Research Commons link: https://hdl.handle.net/10289/10980
      Abstract
      Constellations are partial algebras that are one-sided generalisations of categories. Indeed, we show that a category is exactly a constellation that also satisfies the left-right dual axioms. Constellations have previously appeared in the context of inductive constellations: the category of inductive constellations is known to be isomorphic to the category of left restriction semigroups. Here we consider constellations in full generality, giving many examples. We characterise those small constellations that are isomorphic to constellations of partial functions. We examine in detail the relationship between constellations and categories. In particular, we characterise those constellations that arise as (sub-)reducts of categories. We demonstrate that the notion of substructure can be captured within constellations but not within categories. We show that every constellation P gives rise to a category (Formula presented.), its canonical extension, in a simplest possible way, and that P is a quotient of (Formula presented.) in a natural sense. We also show that many of the most common concrete categories may be constructed from simpler quotient constellations using this construction. We characterise the canonical congruences (Formula presented.) on a given category (Formula presented.) (those for which (Formula presented.), and show that the category of constellations is equivalent to the category of (Formula presented.)-categories, that is, categories equipped with distinguished canonical congruence (Formula presented.). The main observation of this paper is that category theory as it applies to the familiar concrete categories of modern mathematics (which come equipped with natural notions of substructures and indeed are (Formula presented.)-categories) may be subsumed by constellation theory.
      Date
      2017
      Type
      Journal Article
      Publisher
      Springer
      Rights
      This is an author’s submitted version of an article published in the journal: Algebra Universalis. © Springer International Publishing 2017. The final publication is available at Springer via dx.doi.org/10.1007/s00012-017-0432-5
      Collections
      • Computing and Mathematical Sciences Papers [1454]
      Show full item record  

      Usage

      Downloads, last 12 months
      106
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement