Show simple item record  

dc.contributor.authorStreeter, Leeen_NZ
dc.contributor.authorScott, Jonathan B.en_NZ
dc.contributor.authorLickfold, Carl A.en_NZ
dc.contributor.authorCree, Michael J.en_NZ
dc.contributor.editorBailey, D.en_NZ
dc.contributor.editorSenGupta, G.en_NZ
dc.contributor.editorMarsland, S.en_NZ
dc.coverage.spatialPalmerston North, New Zealanden_NZ
dc.date.accessioned2017-05-23T23:40:56Z
dc.date.available2016en_NZ
dc.date.available2017-05-23T23:40:56Z
dc.date.issued2016en_NZ
dc.identifier.citationStreeter, L., Scott, J. B., Lickfold, C. A., & Cree, M. J. (2016). Design of a Pseudo-Holographic Distributed Time-of-Flight Sonar Range-Imaging System. In D. Bailey, G. SenGupta, & S. Marsland (Eds.), Proceedings of the 2016 International Conference on Image and Vision Computing New Zealand (IVCNZ) (pp. 208–213). Palmerston North, New Zealand: IEEE. https://doi.org/10.1109/IVCNZ.2016.7804452en
dc.identifier.issn2151-2191en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/11077
dc.description.abstractThe design of an audible sonar distributed sensor time-of-flight range imaging system is investigated, sonar being chosen as a substitute for optical range imaging due to cost and simplicity of implementation. The distributed range imaging system proposed is based on the holographic principle where the sensors detect the self interference of the reflected sound from the scene, and the Fourier analysis computes the reflected object profile. An approximate linearised model used in related holographic imaging techniques is found to be inappropriate for the design, and qualitative assessment of simulations show that removing the linearisation dramatically improves image reconstruction. Quantitatively the nonlinear reconstruction improves the RMSE by a factor of 1.3-2.1 times. The full nonlinear reconstruction is slow, and mathematical development lead to 15 fold reduction in computation time.
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.publisherIEEEen_NZ
dc.rightsThis is an author’s accepted version of an article published in Proceedings of the 2016 International Conference on Image and Vision Computing New Zealand (IVCNZ). © 2016 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE
dc.sourceInternational Conference on Image and Vision Computing New Zealand (IVCNZ)en_NZ
dc.subjectScience & Technologyen_NZ
dc.subjectTechnologyen_NZ
dc.subjectComputer Science, Artificial Intelligenceen_NZ
dc.subjectImaging Science & Photographic Technologyen_NZ
dc.subjectComputer Scienceen_NZ
dc.subjectHolographic imagingen_NZ
dc.subjectsonaren_NZ
dc.subjecttime-of-flighten_NZ
dc.subjectstepped frequency continuous waveen_NZ
dc.titleDesign of a Pseudo-Holographic Distributed Time-of-Flight Sonar Range-Imaging Systemen_NZ
dc.typeConference Contribution
dc.identifier.doi10.1109/IVCNZ.2016.7804452
dc.relation.isPartOfProceedings of the 2016 International Conference on Image and Vision Computing New Zealand (IVCNZ)en_NZ
pubs.begin-page208
pubs.elements-id143553
pubs.end-page213
pubs.finish-date2016-11-22en_NZ
pubs.publication-statusPublisheden_NZ
pubs.start-date2016-11-21en_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record