Show simple item record  

dc.contributor.authorCavenagh, Nicholas J.en_NZ
dc.contributor.authorWanless, Ian M.en_NZ
dc.date.accessioned2017-08-31T02:21:20Z
dc.date.available2016en_NZ
dc.date.available2017-08-31T02:21:20Z
dc.date.issued2016en_NZ
dc.identifier.citationCavenagh, N. J., & Wanless, I. M. (2016). There are asymptotically the same number of Latin squares of each parity. Bulletin of the Australian Mathematical Society, 94(2), 187–194. https://doi.org/10.1017/S0004972716000174en
dc.identifier.issn0004-9727en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/11296
dc.description.abstractA Latin square is reduced if its first row and column are in natural order. For Latin squares of a particular order n there are four possible different parities. We confirm a conjecture of Stones and Wanless by showing asymptotic equality between the numbers of reduced Latin squares of each possible parity as the order n → ∞.
dc.format.mimetypeapplication/pdf
dc.language.isoenen_NZ
dc.publisherCambridge University Pressen_NZ
dc.rightsThis is an author’s accepted version of an article published in the journal: Bulletin of the Australian Mathematical Society. © 2016 Australian Mathematical Publishing Association Inc.
dc.subjectScience & Technologyen_NZ
dc.subjectPhysical Sciencesen_NZ
dc.subjectMathematicsen_NZ
dc.subjectLatin squareen_NZ
dc.subjectparityen_NZ
dc.subjectAlon-Tarsi conjectureen_NZ
dc.subjectrow cycleen_NZ
dc.subjectALON-TARSI CONJECTUREen_NZ
dc.titleThere are asymptotically the same number of Latin squares of each parityen_NZ
dc.typeJournal Article
dc.identifier.doi10.1017/S0004972716000174en_NZ
dc.relation.isPartOfBulletin of the Australian Mathematical Societyen_NZ
pubs.begin-page187
pubs.elements-id141227
pubs.end-page194
pubs.issue2en_NZ
pubs.publication-statusPublisheden_NZ
pubs.volume94en_NZ
dc.identifier.eissn1755-1633en_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record