Show simple item record  

dc.contributor.authorTarighaleslami, Amir Hosseinen_NZ
dc.contributor.authorWalmsley, Timothy Gordonen_NZ
dc.contributor.authorAtkins, Martin Johnen_NZ
dc.contributor.authorWalmsley, Michael R.W.en_NZ
dc.contributor.authorNeale, James R.en_NZ
dc.date.accessioned2017-11-22T20:10:35Z
dc.date.available2017en_NZ
dc.date.available2017-11-22T20:10:35Z
dc.date.issued2017en_NZ
dc.identifier.citationTarighaleslami, A. H., Walmsley, T. G., Atkins, M. J., Walmsley, M. R. W., & Neale, J. R. (2017). Total site heat integration: Utility selection and optimisation using cost and exergy derivative analysis. Energy, Online. https://doi.org/10.1016/j.energy.2017.09.148en
dc.identifier.issn0360-5442en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/11507
dc.description.abstractThis paper presents a new Total Site Heat Integration utility temperature selection and optimisation method that can optimise both non-isothermal (e.g. hot water) and isothermal (e.g. steam) utilities. None of the existing methods addresses both non-isothermal and isothermal utility selection and optimisation incorporated in a single procedure. The optimisation affects heat recovery, the number of heat exchangers in Total Site Heat Exchanger Network, heat transfer area, exergy destruction (ED), Utility Cost (UC), Annualised Capital Cost (CC), and Total Annualised Cost (TC). Three optimisation parameters, UC, ED, and TC have been incorporated into a derivative based optimisation procedure where derivatives are minimised sequentially and iteratively based on the specified approach. The new optimisation procedure has been carried out for three different approaches as the combinations of optimisation parameters based on the created derivative map. The merits of the new method have been illustrated using three case studies. These case studies represent a diverse range of processing types and temperatures. Results for the case studies suggest the best derivative optimisation approach is to first optimise UC in combination with ED and then optimise TC. For this approach, TC reductions between 0.6 to 4.6 % for different case studies and scenarios are achieved.en_NZ
dc.format.mimetypeapplication/pdf
dc.language.isoenen_NZ
dc.publisherElsevieren_NZ
dc.rightsThis is an author’s accepted version of an article published in the journal: Energy. © 2017 Elsevier.
dc.subjectTotal site heat integrationen_NZ
dc.subjectOptimisationen_NZ
dc.subjectUtility temperatureen_NZ
dc.subjectExergy destructionen_NZ
dc.subjectTotal annualised costen_NZ
dc.subjectUtility costen_NZ
dc.subjectTotal Site Heat Integration
dc.subjectOptimisation
dc.subjectUtility temperature
dc.subjectExergy destruction
dc.subjectTotal annualised cost
dc.subjectUtility cost
dc.titleTotal site heat integration: Utility selection and optimisation using cost and exergy derivative analysisen_NZ
dc.typeJournal Article
dc.identifier.doi10.1016/j.energy.2017.09.148en_NZ
dc.relation.isPartOfEnergyen_NZ
pubs.elements-id208326
pubs.publication-statusAccepteden_NZ
pubs.publisher-urlhttp://www.sciencedirect.com/science/article/pii/S0360544217316699en_NZ
pubs.volumeOnlineen_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record