Show simple item record  

dc.contributor.authorDelbourgo, Danielen_NZ
dc.contributor.authorMorgan, Kerrien_NZ
dc.date.accessioned2018-07-12T00:10:07Z
dc.date.available2014-06en_NZ
dc.date.available2018-07-12T00:10:07Z
dc.date.issued2014en_NZ
dc.identifier.citationDelbourgo, D., & Morgan, K. (2014). Algebraic invariants arising from the chromatic polynomials of theta graphs. Australasian Journal of Combinatorics, 59(2), 293–310.en
dc.identifier.issn2202-3518en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/11937
dc.description.abstractThis paper investigates some algebraic properties of the chromatic polynomials of theta graphs, i.e. graphs which have three internally disjoint paths sharing the same two distinct end vertices. We give a complete description of the Galois group, discriminant and ramification indices for the chromatic polynomials of theta graphs with three consecutive path lengths. We then do the same for theta graphs with three paths of the same length, by comparing them algebraically to the first family. This algebraic link extends naturally to generalised theta graphs with k + 1 branches.
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.publisherCMSA (Inc.)en_NZ
dc.relation.urihttp://ajc.maths.uq.edu.au/?page=get_volumes&volume=59en_NZ
dc.rightsThis article is published in the Australasian Journal of Combinatorics. Used with permission.
dc.titleAlgebraic invariants arising from the chromatic polynomials of theta graphsen_NZ
dc.typeJournal Article
dc.relation.isPartOfAustralasian Journal of Combinatoricsen_NZ
pubs.begin-page293
pubs.elements-id81710
pubs.end-page310
pubs.issue2en_NZ
pubs.volume59en_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record