Show simple item record  

dc.contributor.authorFrank, Eibe
dc.contributor.authorWitten, Ian H.
dc.date.accessioned2008-10-29T03:18:19Z
dc.date.available2008-10-29T03:18:19Z
dc.date.issued1996-12
dc.identifier.citationFrank, E. & Witten, I. H. (1996). Selecting multiway splits in decision trees. (Working paper 96/31). Hamilton, New Zealand: University of Waikato, Department of Computer Science.en_US
dc.identifier.issn1170-487X
dc.identifier.urihttps://hdl.handle.net/10289/1193
dc.description.abstractDecision trees in which numeric attributes are split several ways are more comprehensible than the usual binary trees because attributes rarely appear more than once in any path from root to leaf. There are efficient algorithms for finding the optimal multiway split for a numeric attribute, given the number of intervals in which it is to be divided. The problem we tackle is how to choose this number in order to obtain small, accurate trees.en_US
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.relation.ispartofseriesComputer Science Working Papers
dc.subjectcomputer scienceen_US
dc.subjectinductive learningen_US
dc.subjectclassificationen_US
dc.subjectdecision-tree learningen_US
dc.subjectrecursive model selectionen_US
dc.subjectcross-validationen_US
dc.subjectMachine learning
dc.titleSelecting multiway splits in decision treesen_US
dc.typeWorking Paperen_US
uow.relation.series96/31


Files in this item

This item appears in the following Collection(s)

Show simple item record