Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Models of q-algebra representations: q-integral transforms and "addition theorems''

      Kalnins, Ernie G.; Miller, W., Jr.
      Thumbnail
      Files
      additional theorems.pdf
      1.287Mb
      DOI
       10.1063/1.530581
      Link
       link.aip.org
      Find in your library  
      Citation
      Export citation
      Kalnins, E.G. & Miller, W., Jr. (1994). Models of q-algebra representations: q-integral transforms and "addition theorems''. Journal of Mathematical Physics, 35, 1951.
      Permanent Research Commons link: https://hdl.handle.net/10289/1204
      Abstract
      In his classic book on group representations and special functions Vilenkin studied the matrix elements of irreducible representations of the Euclidean and oscillator Lie algebras with respect to countable bases of eigenfunctions of the Cartan subalgebras, and he computed the summation identities for Bessel functions and Laguerre polynomials associated with the addition theorems for these matrix elements. He also studied matrix elements of the pseudo-Euclidean and pseudo-oscillator algebras with respect to the continuum bases of generalized eigenfunctions of the Cartan subalgebras of these Lie algebras and this resulted in realizations of the addition theorems for the matrix elements as integral transform identities for Bessel functions and for confluent hypergeometric functions. Here we work out q analogs of these results in which the usual exponential function mapping from the Lie algebra to the Lie group is replaced by the q-exponential mappings Eq and eq. This study of representations of the Euclidean quantum algebra and the q-oscillator algebra (not a quantum algebra) leads to summation, integral transform, and q-integral transform identities for q analogs of the Bessel and confluent hypergeometric functions, extending the results of Vilenkin for the q=1 case.
      Date
      1994-04
      Type
      Journal Article
      Rights
      Copyright 1994 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in the Journal of Mathematical Physics and may be found at http://jmp.aip.org/jmp/top.jsp
      Collections
      • Computing and Mathematical Sciences Papers [1455]
      Show full item record  

      Usage

      Downloads, last 12 months
      81
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement