Show simple item record  

dc.contributor.authorCavenagh, Nicholas J.en_NZ
dc.contributor.authorRamadurai, Reshmaen_NZ
dc.date.accessioned2018-09-03T02:26:28Z
dc.date.available2016en_NZ
dc.date.available2018-09-03T02:26:28Z
dc.date.issued2016en_NZ
dc.identifier.citationCavenagh, N. J., & Ramadurai, R. (2016). On the distances between Latin squares and the smallest defining set size. Electronic Notes in Discrete Mathematics, 54, 15–20. https://doi.org/10.1016/j.endm.2016.09.004en
dc.identifier.issn1571-0653en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/12056
dc.description.abstractWe show that for each Latin square L of order n ≥ 2 , there exists a Latin square L’ ≠ L of order n such that L and L’ differ in at most 8√n̅ cells. Equivalently, each Latin square of order n contains a Latin trade of size at most 8√n̅ . We also show that the size of the smallest defining set in a Latin square is Ω(n³/²).
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.publisherElsevieren_NZ
dc.rightsThis is an author’s accepted version of an article published in the journal: Electronic Notes in Discrete Mathematics. © 2016 Elsevier B.V.
dc.subjectmathematicsen_NZ
dc.subjectLatin squareen_NZ
dc.subjectLatin tradeen_NZ
dc.subjectdefining seten_NZ
dc.subjectcritical seten_NZ
dc.subjectHamming distanceen_NZ
dc.titleOn the distances between Latin squares and the smallest defining set sizeen_NZ
dc.typeJournal Article
dc.identifier.doi10.1016/j.endm.2016.09.004en_NZ
dc.relation.isPartOfElectronic Notes in Discrete Mathematicsen_NZ
pubs.begin-page15
pubs.elements-id137524
pubs.end-page20
pubs.volume54en_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record