Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Symmetries of the Hamilton–Jacobi equation

      Boyer, C.P.; Kalnins, Ernie G.
      Thumbnail
      Files
      Kalnins symmetries.pdf
      1.188Mb
      DOI
       10.1063/1.523364
      Link
       link.aip.org
      Find in your library  
      Citation
      Export citation
      Boyer, C.P. & Kalnins, E.G. (1977). Symmetries of the Hamilton–Jacobi equation. Journal of Mathematical Physics, 18, 1032.
      Permanent Research Commons link: https://hdl.handle.net/10289/1234
      Abstract
      We present a detailed discussion of the infinit esimal symmetries of the Hamilton-Jacobi equation (an arbitrary first order partial equation) Our presentation clucidates the role played by the characteristic system in determining the symmetries. We then specialize to the case of a free particle in one space and one time dimension, and study of local Lie group of point transformations locally isomorphie to O(3,2). We show that the separation of variables of the corresponding Hamilton-Jacobi equation n the form of a sum is related to orbits in the Schrödinger subalgebra of c(3,2). The remaining orbits of o(3,2) yield symmetry related solutions which separate in more complicated product forms. Finally some connections with the primordial equation of hydrodynamics (without force terms) are made.
      Date
      1977-05
      Type
      Journal Article
      Rights
      Copyright 1977 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in the Journal of Mathematical Physics and may be found at http://jmp.aip.org/jmp/top.jsp
      Collections
      • Computing and Mathematical Sciences Papers [1455]
      Show full item record  

      Usage

      Downloads, last 12 months
      63
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement