dc.contributor.author | Delbourgo, Daniel | en_NZ |
dc.contributor.author | Chao, Qin | en_NZ |
dc.date.accessioned | 2019-05-09T04:13:02Z | |
dc.date.available | 2019 | en_NZ |
dc.date.available | 2019-05-09T04:13:02Z | |
dc.date.issued | 2019 | en_NZ |
dc.identifier.citation | Delbourgo, D., & Chao, Q. (2019). K₁-congruences for three-dimensional Lie groups. Annales Mathématiques Du Québec, 43(1), 161–211. https://doi.org/10.1007/s40316-018-0100-y | en |
dc.identifier.issn | 2195-4755 | en_NZ |
dc.identifier.uri | https://hdl.handle.net/10289/12526 | |
dc.description.abstract | We completely describe K₁ (Zₚ [[G∞]]) and its localisations by using an infinite family of p-adic congruences, where G∞ is any solvable p-adic Lie group of dimension 3. This builds on earlier work of Kato when dim(G∞)=2 , and of the first named author and Lloyd Peters when G∞≅Z×p⋉Z𝒹ₚ with a scalar action of Z×ₚ . The method exploits the classification of 3-dimensional p-adic Lie groups due to González-Sánchez and Klopsch, as well as the fundamental ideas of Kakde, Burns, etc. in non-commutative Iwasawa theory. | |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | |
dc.publisher | Springer | en_NZ |
dc.rights | © Fondation Carl-Herz and Springer International Publishing AG, part of Springer Nature 2018.This is the author's accepted version. The final publication is available at Springer via dx.doi.org/10.1007/s40316-018-0100-y | |
dc.subject | mathematics | en_NZ |
dc.subject | Iwasawa theory | en_NZ |
dc.subject | K-theory | en_NZ |
dc.subject | p-adic L-functions | en_NZ |
dc.subject | Galois representations | en_NZ |
dc.title | K₁-congruences for three-dimensional Lie groups | en_NZ |
dc.type | Journal Article | |
dc.identifier.doi | 10.1007/s40316-018-0100-y | en_NZ |
dc.relation.isPartOf | Annales Mathématiques du Québec | en_NZ |
pubs.begin-page | 161 | |
pubs.elements-id | 220109 | |
pubs.end-page | 211 | |
pubs.issue | 1 | en_NZ |
pubs.publication-status | Published | en_NZ |
pubs.volume | 43 | en_NZ |