Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Computing L-Invariants for the Symmetric Square of an Elliptic Curve

      Delbourgo, Daniel; Gilmore, Hamish Julian
      Thumbnail
      Files
      Experimental Mathematics paper.pdf
      Accepted version, 518.9Kb
      DOI
       10.1080/10586458.2018.1490936
      Find in your library  
      Citation
      Export citation
      Delbourgo, D., & Gilmore, H. (2019). Computing L-Invariants for the Symmetric Square of an Elliptic Curve. Experimental Mathematics. https://doi.org/10.1080/10586458.2018.1490936
      Permanent Research Commons link: https://hdl.handle.net/10289/12559
      Abstract
      Let E be an elliptic curve over Q, and p≠2 a prime of good ordinary reduction. The p-adic L-function for Sym²E always vanishes at s = 1, even though the complex L-function does not have a zero there. The L-invariant itself appears on the right-hand side of the formula

      ddsLp(Sym²E,s)∣∣∣s=1=Lp(Sym²E)×(1−α⁻²ᵖ)(1−pα⁻²ᵖ)×L∞(Sym²E,1)(2πi)⁻¹Ω+EΩ-E

      where X²−aᵖ(E)X+p=(X−αᵖ)(X−βᵖ) with αp∈Z×ᵖ. We first devise a method to calculate Lp(Sym²E) effectively, then show it is non-trivial for all elliptic curves E of conductor NE≤300 with 4|NE, and almost all ordinary primes p < 17. Hence, in these cases at least, the order of the zero in Lp(Sym²E,s) at s = 1 is exactly one.
      Date
      2019
      Type
      Journal Article
      Publisher
      Taylor & Francis
      Rights
      This is an author’s accepted version of an article published in the journal: Experimental Mathematics. © 2019 Taylor & Francis Group, LLC
      Collections
      • Computing and Mathematical Sciences Papers [1455]
      Show full item record  

      Usage

      Downloads, last 12 months
      105
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement