dc.contributor.author | Delbourgo, Daniel | en_NZ |
dc.contributor.author | Gilmore, Hamish Julian | en_NZ |
dc.date.accessioned | 2019-05-27T00:28:19Z | |
dc.date.available | 2019-03-23 | en_NZ |
dc.date.available | 2019-05-27T00:28:19Z | |
dc.date.issued | 2019 | en_NZ |
dc.identifier.citation | Delbourgo, D., & Gilmore, H. (2019). Computing L-Invariants for the Symmetric Square of an Elliptic Curve. Experimental Mathematics. https://doi.org/10.1080/10586458.2018.1490936 | en |
dc.identifier.issn | 1058-6458 | en_NZ |
dc.identifier.uri | https://hdl.handle.net/10289/12559 | |
dc.description.abstract | Let E be an elliptic curve over Q, and p≠2 a prime of good ordinary reduction. The p-adic L-function for Sym²E always vanishes at s = 1, even though the complex L-function does not have a zero there. The L-invariant itself appears on the right-hand side of the formula
ddsLp(Sym²E,s)∣∣∣s=1=Lp(Sym²E)×(1−α⁻²ᵖ)(1−pα⁻²ᵖ)×L∞(Sym²E,1)(2πi)⁻¹Ω+EΩ-E
where X²−aᵖ(E)X+p=(X−αᵖ)(X−βᵖ) with αp∈Z×ᵖ. We first devise a method to calculate Lp(Sym²E) effectively, then show it is non-trivial for all elliptic curves E of conductor NE≤300 with 4|NE, and almost all ordinary primes p < 17. Hence, in these cases at least, the order of the zero in Lp(Sym²E,s) at s = 1 is exactly one. | |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | en_NZ |
dc.publisher | Taylor & Francis | en_NZ |
dc.rights | This is an author’s accepted version of an article published in the journal: Experimental Mathematics. © 2019 Taylor & Francis Group, LLC | |
dc.subject | Science & Technology | en_NZ |
dc.subject | Physical Sciences | en_NZ |
dc.subject | Mathematics | en_NZ |
dc.subject | Elliptic curves | en_NZ |
dc.subject | Iwasawa theory | en_NZ |
dc.subject | L-functions | en_NZ |
dc.subject | deformation theory | en_NZ |
dc.subject | modular forms | en_NZ |
dc.subject | ADIC L-FUNCTIONS | en_NZ |
dc.subject | AUTOMORPHIC REPRESENTATIONS | en_NZ |
dc.title | Computing L-Invariants for the Symmetric Square of an Elliptic Curve | en_NZ |
dc.type | Journal Article | |
dc.identifier.doi | 10.1080/10586458.2018.1490936 | en_NZ |
dc.relation.isPartOf | Experimental Mathematics | en_NZ |
pubs.elements-id | 224903 | |
pubs.publication-status | Published | en_NZ |
dc.identifier.eissn | 1944-950X | en_NZ |