Show simple item record  

dc.contributor.authorDelbourgo, Danielen_NZ
dc.contributor.authorGilmore, Hamishen_NZ
dc.date.accessioned2019-05-27T00:28:19Z
dc.date.available2019-03-23en_NZ
dc.date.available2019-05-27T00:28:19Z
dc.date.issued2019en_NZ
dc.identifier.citationDelbourgo, D., & Gilmore, H. (2019). Computing L-Invariants for the Symmetric Square of an Elliptic Curve. Experimental Mathematics. https://doi.org/10.1080/10586458.2018.1490936en
dc.identifier.issn1058-6458en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/12559
dc.description.abstractLet E be an elliptic curve over Q, and p≠2 a prime of good ordinary reduction. The p-adic L-function for Sym²E always vanishes at s = 1, even though the complex L-function does not have a zero there. The L-invariant itself appears on the right-hand side of the formula ddsLp(Sym²E,s)∣∣∣s=1=Lp(Sym²E)×(1−α⁻²ᵖ)(1−pα⁻²ᵖ)×L∞(Sym²E,1)(2πi)⁻¹Ω+EΩ-E where X²−aᵖ(E)X+p=(X−αᵖ)(X−βᵖ) with αp∈Z×ᵖ. We first devise a method to calculate Lp(Sym²E) effectively, then show it is non-trivial for all elliptic curves E of conductor NE≤300 with 4|NE, and almost all ordinary primes p < 17. Hence, in these cases at least, the order of the zero in Lp(Sym²E,s) at s = 1 is exactly one.
dc.format.mimetypeapplication/pdf
dc.language.isoenen_NZ
dc.publisherTaylor & Francisen_NZ
dc.rightsThis is an author’s accepted version of an article published in the journal: Experimental Mathematics. © 2019 Taylor & Francis Group, LLC
dc.subjectScience & Technologyen_NZ
dc.subjectPhysical Sciencesen_NZ
dc.subjectMathematicsen_NZ
dc.subjectElliptic curvesen_NZ
dc.subjectIwasawa theoryen_NZ
dc.subjectL-functionsen_NZ
dc.subjectdeformation theoryen_NZ
dc.subjectmodular formsen_NZ
dc.subjectADIC L-FUNCTIONSen_NZ
dc.subjectAUTOMORPHIC REPRESENTATIONSen_NZ
dc.titleComputing L-Invariants for the Symmetric Square of an Elliptic Curveen_NZ
dc.typeJournal Article
dc.identifier.doi10.1080/10586458.2018.1490936en_NZ
dc.relation.isPartOfExperimental Mathematicsen_NZ
pubs.elements-id224903
pubs.publication-statusPublisheden_NZ
dc.identifier.eissn1944-950Xen_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record