Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      AffectiveTweets: a Weka package for analyzing affect in tweets

      Bravo-Marquez, Felipe; Frank, Eibe; Pfahringer, Bernhard; Mohammad, Saif M.
      Thumbnail
      Files
      JMLR paper.pdf
      Published version, 182.5Kb
      Link
       jmlr.org
      Find in your library  
      Citation
      Export citation
      Bravo-Marquez, F., Frank, E., Pfahringer, B., & Mohammad, S. M. (2019). AffectiveTweets: a Weka package for analyzing affect in tweets. Journal of Machine Learning Research, 20, 1–6.
      Permanent Research Commons link: https://hdl.handle.net/10289/12617
      Abstract
      AffectiveTweets is a set of programs for analyzing emotion and sentiment of social media messages such as tweets. It is implemented as a package for the Weka machine learning workbench and provides methods for calculating state-of-the-art affect analysis features from tweets that can be fed into machine learning algorithms implemented in Weka. It also implements methods for building affective lexicons and distant supervision methods for training affective models from unlabeled tweets. The package was used by several teams in the shared tasks: EmoInt 2017 and Affect in Tweets SemEval 2018 Task 1.
      Date
      2019
      Type
      Journal Article
      Publisher
      Microtome Publishing
      Rights
      © 2019 Felipe Bravo-Marquez, Eibe Frank, Bernhard Pfahringer, and Saif M. Mohammad. License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at http://jmlr.org/papers/v20/18-450.html.
      Collections
      • Computing and Mathematical Sciences Papers [1455]
      Show full item record  

      Usage

      Downloads, last 12 months
      13
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement