Show simple item record  

dc.contributor.authorWilson, Marcus T.en_NZ
dc.contributor.authorFung, P.K.en_NZ
dc.contributor.authorRobinson, P.A.en_NZ
dc.contributor.authorShemmell, J.en_NZ
dc.contributor.authorReynolds, J.N.J.en_NZ
dc.date.accessioned2019-09-18T21:29:03Z
dc.date.available2016-08-01en_NZ
dc.date.available2019-09-18T21:29:03Z
dc.date.issued2016en_NZ
dc.identifier.citationWilson, M. T., Fung, P. K., Robinson, P. A., Shemmell, J., & Reynolds, J. N. J. (2016). Calcium dependent plasticity applied to repetitive transcranial magnetic stimulation with a neural field model. Journal of Computational Neuroscience, 41(1), 107–125. https://doi.org/10.1007/s10827-016-0607-7en
dc.identifier.issn0929-5313en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/12885
dc.description.abstractThe calcium dependent plasticity (CaDP) approach to the modeling of synaptic weight change is applied using a neural field approach to realistic repetitive transcranial magnetic stimulation (rTMS) protocols. A spatially-symmetric nonlinear neural field model consisting of populations of excitatory and inhibitory neurons is used. The plasticity between excitatory cell populations is then evaluated using a CaDP approach that incorporates metaplasticity. The direction and size of the plasticity (potentiation or depression) depends on both the amplitude of stimulation and duration of the protocol. The breaks in the inhibitory theta-burst stimulation protocol are crucial to ensuring that the stimulation bursts are potentiating in nature. Tuning the parameters of a spike-timing dependent plasticity (STDP) window with a Monte Carlo approach to maximize agreement between STDP predictions and the CaDP results reproduces a realistically-shaped window with two regions of depression in agreement with the existing literature. Developing understanding of how TMS interacts with cells at a network level may be important for future investigation.
dc.format.mimetypeapplication/pdf
dc.language.isoenen_NZ
dc.publisherSpringeren_NZ
dc.rightsThis is an author’s accepted version of an article published in the journal: Journal of Computational Neuroscience. © Springer
dc.subjectScience & Technologyen_NZ
dc.subjectLife Sciences & Biomedicineen_NZ
dc.subjectMathematical & Computational Biologyen_NZ
dc.subjectNeurosciencesen_NZ
dc.subjectNeurosciences & Neurologyen_NZ
dc.subjectTranscranial magnetic stimulationen_NZ
dc.subjectCalcium dependent plasticityen_NZ
dc.subjectModelingen_NZ
dc.subjectTheta burst stimulationen_NZ
dc.subjectNeural field theoryen_NZ
dc.subjectTHETA-BURST STIMULATIONen_NZ
dc.subjectBIOPHYSICAL MODELen_NZ
dc.subjectMOTOR CORTEXen_NZ
dc.subjectBRAINen_NZ
dc.subjectMETAPLASTICITYen_NZ
dc.subjectSPECIFICITYen_NZ
dc.subjectINHIBITIONen_NZ
dc.subjectDEPRESSIONen_NZ
dc.subjectEFFICACYen_NZ
dc.subjectFUTUREen_NZ
dc.titleCalcium dependent plasticity applied to repetitive transcranial magnetic stimulation with a neural field modelen_NZ
dc.typeJournal Article
dc.identifier.doi10.1007/s10827-016-0607-7en_NZ
dc.relation.isPartOfJournal of Computational Neuroscienceen_NZ
pubs.begin-page107
pubs.elements-id139093
pubs.end-page125
pubs.issue1en_NZ
pubs.publication-statusPublisheden_NZ
pubs.volume41en_NZ
dc.identifier.eissn1573-6873en_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record