Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Finite dissipation in anisotropic magnetohydrodynamic turbulence

      Bandyopadhyay, R.; Oughton, Sean; Wan, M.; Matthaeus, William H.; Chhiber, R.; Parashar, Tulasi N.
      Thumbnail
      Files
      BandyopadhyayEA18-Ceps-prx.pdf
      Published version, 271.6Kb
      DOI
       10.1103/PhysRevX.8.041052
      Find in your library  
      Citation
      Export citation
      Bandyopadhyay, R., Oughton, S., Wan, M., Matthaeus, W. H., Chhiber, R., & Parashar, T. N. (2018). Finite dissipation in anisotropic magnetohydrodynamic turbulence. Physical Review X, 8(4). https://doi.org/10.1103/PhysRevX.8.041052
      Permanent Research Commons link: https://hdl.handle.net/10289/13057
      Abstract
      In the presence of an externally supported, mean magnetic field, a turbulent, conducting medium, such as plasma, becomes anisotropic. This mean magnetic field, which is separate from the fluctuating, turbulent part of the magnetic field, has considerable effects on the dynamics of the system. In this paper, we examine the dissipation rates for decaying incompressible magnetohydrodynamic (MHD) turbulence with an increasing Reynolds number and in the presence of a mean magnetic field of varying strength. Proceeding numerically, we find that, as the Reynolds number increases, the dissipation rate asymptotes to a finite value for each magnetic-field strength, confirming the Kármán-Howarth hypothesis as applied to MHD. The asymptotic value of the dimensionless dissipation rate is initially suppressed from the zero-mean-field value by the mean magnetic field but then approaches a constant value for higher values of the mean-field strength. Additionally, for comparison, we perform a set of two-dimensional (2DMHD) and a set of reduced MHD (RMHD) simulations. We find that the RMHD results lie very close to the values corresponding to the high-mean-field limit of the three-dimensional runs while the 2DMHD results admit distinct values far from both the zero-mean-field cases and the high-mean-field limit of the threedimensional cases. These findings provide firm underpinnings for numerous applications in space and astrophysics wherein von Kármán decay of turbulence is assumed.
      Date
      2018
      Type
      Journal Article
      Publisher
      American Physical Society
      Rights
      Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
      Collections
      • Computing and Mathematical Sciences Papers [1455]
      Show full item record  

      Usage

      Downloads, last 12 months
      48
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement