Show simple item record  

dc.contributor.authorFirestone, Ross S.en_NZ
dc.contributor.authorCameron, Scott A.en_NZ
dc.contributor.authorKarp, Jerome M.en_NZ
dc.contributor.authorArcus, Vickery L.en_NZ
dc.contributor.authorSchramm, Vern L.en_NZ
dc.date.accessioned2019-11-26T01:40:14Z
dc.date.available2017-02-01en_NZ
dc.date.available2019-11-26T01:40:14Z
dc.date.issued2017en_NZ
dc.identifier.citationFirestone, R. S., Cameron, S. A., Karp, J. M., Arcus, V. L., & Schramm, V. L. (2017). Heat capacity changes for transition-state analogue binding and catalysis with human 5 ’-methylthioadenosine phosphorylase. ACS Chemical Biology, 12(2), 464–473. https://doi.org/10.1021/acschembio.6b00885en
dc.identifier.issn1554-8929en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/13192
dc.description.abstractHuman 5′-methylthioadenosine phosphorylase (MTAP) catalyzes the phosphorolysis of 5′-methylthioadenosine (MTA). Its action regulates cellular MTA and links polyamine synthesis to S-adenosylmethionine (AdoMet) salvage. Transition state analogues with picomolar dissociation constants bind to MTAP in an entropically driven process at physiological temperatures, suggesting increased hydrophobic character or dynamic structure for the complexes. Inhibitor binding exhibits a negative heat capacity change (−ΔCₚ), and thus the changes in enthalpy and entropy upon binding are strongly temperature-dependent. The ΔCₚ of inhibitor binding by isothermal titration calorimetry does not follow conventional trends and is contrary to that expected from the hydrophobic effect. Thus, ligands of increasing hydrophobicity bind with increasing values of ΔCₚ. Crystal structures of MTAP complexed to transition-state analogues MT-DADMe-ImmA, BT-DADMe-ImmA, PrT-ImmA, and a substrate analogue, MT-tubercidin, reveal similar active site contacts and overall protein structural parameters, despite large differences in ΔCₚ for binding. In addition, ΔCₚ values are not correlated with Kd values. Temperature dependence of presteady state kinetics revealed the chemical step for the MTAP reaction to have a negative heat capacity for transition state formation (−ΔCₚ‡). A comparison of the ΔCₚ‡ for MTAP presteady state chemistry and ΔCₚ for inhibitor binding revealed those transition-state analogues most structurally and thermodynamically similar to the transition state. Molecular dynamics simulations of MTAP apoenzyme and complexes with MT-DADMe-ImmA and MT-tubercidin show small, but increased dynamic motion in the inhibited complexes. Variable temperature CD spectroscopy studies for MTAP–inhibitor complexes indicate remarkable protein thermal stability (to Tₘ = 99 °C) in complexes with transition-state analogues.
dc.format.mimetypeapplication/pdf
dc.language.isoenen_NZ
dc.publisherAmerican Chemical Societyen_NZ
dc.rightsThis is an author’s accepted version of an article published in the journal: ACS Chemical Biology. © 2017 American Chemical Society.
dc.subjectScience & Technologyen_NZ
dc.subjectLife Sciences & Biomedicineen_NZ
dc.subjectBiochemistry & Molecular Biologyen_NZ
dc.subjectPURINE NUCLEOSIDE PHOSPHORYLASEen_NZ
dc.subjectENTHALPY-ENTROPY COMPENSATIONen_NZ
dc.subjectTEMPERATURE-DEPENDENCEen_NZ
dc.subjectINHIBITORSen_NZ
dc.subjectDYNAMICSen_NZ
dc.subjectINTEGRATIONen_NZ
dc.subjectREFINEMENTen_NZ
dc.subjectMETABOLISMen_NZ
dc.subjectMETHIONINEen_NZ
dc.subjectPREDICTIONen_NZ
dc.titleHeat capacity changes for transition-state analogue binding and catalysis with human 5 '-methylthioadenosine phosphorylaseen_NZ
dc.typeJournal Article
dc.identifier.doi10.1021/acschembio.6b00885en_NZ
dc.relation.isPartOfACS Chemical Biologyen_NZ
pubs.begin-page464
pubs.elements-id192650
pubs.end-page473
pubs.issue2en_NZ
pubs.publication-statusPublisheden_NZ
pubs.volume12en_NZ
dc.identifier.eissn1554-8937en_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record