Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Trophic state assessment of global inland waters using a MODIS-derived Forel-Ule index

      Wang, Shenglei; Li, Junsheng; Zhang, Bing; Spyrakos, Evangelos; Tyler, Andrew N.; Shen, Qian; Zhang, Fangfang; Kutser, Tiit; Lehmann, Moritz K.; Wu, Yanhong; Peng, Dailiang
      Thumbnail
      Files
      Lehmann Trophic state assessment.pdf
      Accepted version, 3.415Mb
      DOI
       10.1016/j.rse.2018.08.026
      Find in your library  
      Citation
      Export citation
      Wang, S., Li, J., Zhang, B., Spyrakos, E., Tyler, A. N., Shen, Q., … Peng, D. (2018). Trophic state assessment of global inland waters using a MODIS-derived Forel-Ule index. Remote Sensing of Environment, 217, 444–460. https://doi.org/10.1016/j.rse.2018.08.026
      Permanent Research Commons link: https://hdl.handle.net/10289/13195
      Abstract
      Eutrophication of inland waters is considered a serious global environmental problem. Satellite remote sensing (RS) has been established as an important source of information to determine the trophic state of inland waters through the retrieval of optically active water quality parameters such as chlorophyll-a (Chl-a). However, the use of RS techniques for assessment of the trophic state of inland waters on a global scale is hindered by the performance of retrieval algorithms over highly dynamic and complex optical properties that characterize many of these systems. In this study, we developed a new RS approach to assess the trophic state of global inland water bodies based on Moderate Resolution Imaging Spectroradiometer (MODIS) imagery and the Forel-Ule index (FUI). First, the FUI was calculated from MODIS data by dividing natural water colour into 21 indices from dark blue to yellowish-brown. Then the relationship between FUI and the trophic state index (TSI) was established based on in-situ measurements and MODIS products. The water-leaving reflectance at 645 nm band was employed to distinguish coloured dissolved organic matter (CDOM)-dominated systems in the FUI-based trophic state assessment. Based on the analysis, the FUI-based trophic state assessment method was developed and applied to assess the trophic states of 2058 large inland water bodies (surface area >25 km2) distributed around the world using MODIS data from the austral and boreal summers of 2012. Our results showed that FUI can be retrieved from MODIS with a considerable accuracy (92.5%, R2 = 0.92) by comparing with concurrent in situ measurements over a wide range of lakes, and the overall accuracy of the FUI-based trophic state assessment method is 80.0% (R2 = 0.75) validated by an independent dataset. Of the global large water bodies considered, oligotrophic large lakes were found to be concentrated in plateau regions in central Asia and southern South America, while eutrophic large lakes were concentrated in central Africa, eastern Asia, and mid-northern and southeast North America.
      Date
      2018
      Type
      Journal Article
      Publisher
      Elsevier
      Rights
      This is an author’s accepted version of an article published in the journal: Remote Sensing of Environment. © 2018 Elsevier.
      Collections
      • Science and Engineering Papers [3122]
      Show full item record  

      Usage

      Downloads, last 12 months
      100
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement