Show simple item record  

dc.contributor.authorStokes, Tim E.en_NZ
dc.date.accessioned2019-12-02T02:51:15Z
dc.date.available2015-01-01en_NZ
dc.date.available2019-12-02T02:51:15Z
dc.date.issued2015en_NZ
dc.identifier.citationStokes, T. E. (2015). Domain and range operations in semigroups and rings. Communications in Algebra, 43(9), 3979–4007. https://doi.org/10.1080/00927872.2014.937533en
dc.identifier.issn0092-7872en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/13246
dc.description.abstractA D-semigroup S is a semigroup equipped with an operation D satisfying laws asserting that for a ∈ S, D(a) is the smallest e in some set of idempotents U ⊆ S for which ea = a. D-semigroups correspond to left-reduced U-semiabundant semigroups. The basic properties and many examples of D-semigroups are given. Also considered are D-rings, whose multiplicative semigroup is a D-semigroup. Rickart *-rings provide important examples, and the most general D-rings for which the elements of the form D(a) constitute a lattice under the same meet and join operations as for Rickart *-rings are described.
dc.format.mimetypeapplication/pdf
dc.language.isoenen_NZ
dc.publisherTaylor and Francisen_NZ
dc.rightsThis is an author’s accepted version of an article published in the journal: Communications in Algebra. © 2015 Taylor & Francis Group.
dc.subjectScience & Technologyen_NZ
dc.subjectPhysical Sciencesen_NZ
dc.subjectMathematicsen_NZ
dc.subjectRickart *-ringen_NZ
dc.subjectU-semiabundant semigroupen_NZ
dc.subjectU-semiadequate semigroupen_NZ
dc.subjectRESTRICTION SEMIGROUPSen_NZ
dc.subjectABUNDANT SEMIGROUPSen_NZ
dc.subjectCATEGORIESen_NZ
dc.subjectALGEBRASen_NZ
dc.titleDomain and range operations in semigroups and ringsen_NZ
dc.typeJournal Article
dc.identifier.doi10.1080/00927872.2014.937533en_NZ
dc.relation.isPartOfCommunications in Algebraen_NZ
pubs.begin-page3979
pubs.elements-id128088
pubs.end-page4007
pubs.issue9en_NZ
pubs.publication-statusPublisheden_NZ
pubs.volume43en_NZ
dc.identifier.eissn1532-4125en_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record