Show simple item record  

dc.contributor.authorLiengaard, Benjamin Dybroen_NZ
dc.contributor.authorSharma, Pratyush Nidhien_NZ
dc.contributor.authorHult, G. Tomas M.en_NZ
dc.contributor.authorJensen, Morten Bergen_NZ
dc.contributor.authorSarstedt, Markoen_NZ
dc.contributor.authorHair, Joseph F.en_NZ
dc.contributor.authorRingle, Christian M.en_NZ
dc.date.accessioned2020-06-18T21:30:36Z
dc.date.available2020-06-18T21:30:36Z
dc.date.issued2020en_NZ
dc.identifier.citationLiengaard, B. D., Sharma, P. N., Hult, G. T. M., Jensen, M. B., Sarstedt, M., Hair, J. F., & Ringle, C. M. (2020). Prediction: coveted, yet forsaken? Introducing a cross-validated predictive ability test in partial least squares path modeling. Decision Sciences. https://doi.org/10.1111/deci.12445en
dc.identifier.issn0011-7315en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/13641
dc.description.abstractManagement researchers often develop theories and policies that are forward‐looking. The prospective outlook of predictive modeling, where a model predicts unseen or new data, can complement the retrospective nature of causal‐explanatory modeling that dominates the field. Partial least squares (PLS) path modeling is an excellent tool for building theories that offer both explanation and prediction. A limitation of PLS, however, is the lack of a statistical test to assess whether a proposed or alternative theoretical model offers significantly better out‐of‐sample predictive power than a benchmark or an established model. Such an assessment of predictive power is essential for theory development and validation, and for selecting a model on which to base managerial and policy decisions. We introduce the cross‐validated predictive ability test (CVPAT) to conduct a pairwise comparison of predictive power of competing models, and substantiate its performance via multiple Monte Carlo studies. We propose a stepwise predictive model comparison procedure to guide researchers, and demonstrate CVPAT's practical utility using the well‐known American Customer Satisfaction Index (ACSI) model.
dc.format.mimetypeapplication/pdf
dc.language.isoenen_NZ
dc.publisherWileyen_NZ
dc.relation.urihttps://onlinelibrary.wiley.com/doi/full/10.1111/deci.12445
dc.rights© 2020 The Authors. Decision Sciences published by Decision Sciences Institute This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
dc.subjectSocial Sciencesen_NZ
dc.subjectManagementen_NZ
dc.subjectBusiness & Economicsen_NZ
dc.subjectCross-Validationen_NZ
dc.subjectExplanationen_NZ
dc.subjectPartial Least Squaresen_NZ
dc.subjectPredictionen_NZ
dc.subjectStructural Equation Modelingen_NZ
dc.subjectCUSTOMER SATISFACTIONen_NZ
dc.subjectCONFIDENCE-INTERVALSen_NZ
dc.subjectSTATISTICAL TESTSen_NZ
dc.subjectP-VALUESen_NZ
dc.subjectPLS-SEMen_NZ
dc.subjectFUTUREen_NZ
dc.subjectRETHINKINGen_NZ
dc.subjectTECHNOLOGYen_NZ
dc.subjectACCEPTANCEen_NZ
dc.subjectEVOLUTIONen_NZ
dc.titlePrediction: coveted, yet forsaken? Introducing a cross-validated predictive ability test in partial least squares path modelingen_NZ
dc.typeJournal Article
dc.identifier.doi10.1111/deci.12445en_NZ
dc.relation.isPartOfDecision Sciencesen_NZ
pubs.elements-id254215
pubs.publication-statusPublisheden_NZ
dc.identifier.eissn1540-5915en_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record