Show simple item record  

dc.contributor.authorCarnein, Matthiasen_NZ
dc.contributor.authorTrautmann, Heikeen_NZ
dc.contributor.authorBifet, Alberten_NZ
dc.contributor.authorPfahringer, Bernharden_NZ
dc.contributor.editorCellier, Peggyen_NZ
dc.contributor.editorDriessens, Kurten_NZ
dc.coverage.spatialWürzburg, Germanyen_NZ
dc.date.accessioned2020-08-21T00:38:34Z
dc.date.available2019en_NZ
dc.date.available2020-08-21T00:38:34Z
dc.date.issued2019en_NZ
dc.identifier.citationCarnein, M., Trautmann, H., Bifet, A., & Pfahringer, B. (2019). Towards automated configuration of stream clustering algorithms. In P. Cellier & K. Driessens (Eds.), Machine Learning and Knowledge Discovery in Databases: Proc ECML PKDD 2019, Part 1 (Vol. CCIS 1167, pp. 137–143). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-030-43823-4_12en
dc.identifier.isbn9783030438227en_NZ
dc.identifier.issn1865-0929en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/13746
dc.description.abstractClustering is an important technique in data analysis which can reveal hidden patterns and unknown relationships in the data. A common problem in clustering is the proper choice of parameter settings. To tackle this, automated algorithm configuration is available which can automatically find the best parameter settings. In practice, however, many of our today’s data sources are data streams due to the widespread deployment of sensors, the internet-of-things or (social) media. Stream clustering aims to tackle this challenge by identifying, tracking and updating clusters over time. Unfortunately, none of the existing approaches for automated algorithm configuration are directly applicable to the streaming scenario. In this paper, we explore the possibility of automated algorithm configuration for stream clustering algorithms using an ensemble of different configurations. In first experiments, we demonstrate that our approach is able to automatically find superior configurations and refine them over time.en_NZ
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.publisherSpringeren_NZ
dc.rightsThis is a post-peer-review, pre-copyedit version of an article published in Proceedings of ECML PKDD: Joint European Conference on Machine Learning and Knowledge Discovery in Databases. The final authenticated version is available online at: https://doi.org/10.1007/978-3-030-43823-4_12
dc.sourceECML PKDD 2019en_NZ
dc.subjectcomputer scienceen_NZ
dc.subjectstream clusteringen_NZ
dc.subjectautomated algorithm configurationen_NZ
dc.subjectalgorithm selectionen_NZ
dc.subjectensemble techniquesen_NZ
dc.titleTowards automated configuration of stream clustering algorithmsen_NZ
dc.typeConference Contribution
dc.identifier.doi10.1007/978-3-030-43823-4_12en_NZ
dc.relation.isPartOfMachine Learning and Knowledge Discovery in Databases: Proc ECML PKDD 2019, Part 1en_NZ
pubs.begin-page137
pubs.elements-id252633
pubs.end-page143
pubs.finish-date2019-09-20en_NZ
pubs.place-of-publicationCham, Switzerland
pubs.publication-statusPublisheden_NZ
pubs.start-date2019-09-16en_NZ
pubs.volumeCCIS 1167en_NZ
dc.identifier.eissn1865-0937en_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record