Show simple item record  

dc.contributor.authorJackson, Marcelen_NZ
dc.contributor.authorStokes, Tim E.en_NZ
dc.date.accessioned2020-08-26T21:19:56Z
dc.date.available2020-08-26T21:19:56Z
dc.date.issued2021en_NZ
dc.identifier.citationJackson, M., & Stokes, T. E. (2021). Override and update. Journal of Pure and Applied Algebra, 225(3), 106532–106532. https://doi.org/10.1016/j.jpaa.2020.106532en
dc.identifier.issn0022-4049en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/13760
dc.description.abstractOverride and update are natural constructions for combining partial functions, which arise in various program specification contexts. We use an unexpected connection with combinatorial geometry to provide a complete finite system of equational axioms for the first order theory of the override and update constructions on partial functions, resolving the main unsolved problem in the area.
dc.format.mimetypeapplication/pdf
dc.language.isoenen_NZ
dc.publisherElsevier BVen_NZ
dc.rights© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleOverride and updateen_NZ
dc.typeJournal Article
dc.identifier.doi10.1016/j.jpaa.2020.106532en_NZ
dc.relation.isPartOfJournal of Pure and Applied Algebraen_NZ
pubs.begin-page106532
pubs.elements-id256947
pubs.end-page106532
pubs.issue3en_NZ
pubs.publication-statusAccepteden_NZ
pubs.volume225en_NZ
uow.identifier.article-no106532


Files in this item

This item appears in the following Collection(s)

Show simple item record