dc.contributor.author | Jackson, Marcel | en_NZ |
dc.contributor.author | Stokes, Tim E. | en_NZ |
dc.date.accessioned | 2020-08-26T21:19:56Z | |
dc.date.available | 2020-08-26T21:19:56Z | |
dc.date.issued | 2021 | en_NZ |
dc.identifier.citation | Jackson, M., & Stokes, T. E. (2021). Override and update. Journal of Pure and Applied Algebra, 225(3), 106532–106532. https://doi.org/10.1016/j.jpaa.2020.106532 | en |
dc.identifier.issn | 0022-4049 | en_NZ |
dc.identifier.uri | https://hdl.handle.net/10289/13760 | |
dc.description.abstract | Override and update are natural constructions for combining partial functions, which arise in various program specification contexts. We use an unexpected connection with combinatorial geometry to provide a complete finite system of equational axioms for the first order theory of the override and update constructions on partial functions, resolving the main unsolved problem in the area. | |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | en_NZ |
dc.publisher | Elsevier BV | en_NZ |
dc.rights | © 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.title | Override and update | en_NZ |
dc.type | Journal Article | |
dc.identifier.doi | 10.1016/j.jpaa.2020.106532 | en_NZ |
dc.relation.isPartOf | Journal of Pure and Applied Algebra | en_NZ |
pubs.begin-page | 106532 | |
pubs.elements-id | 256947 | |
pubs.end-page | 106532 | |
pubs.issue | 3 | en_NZ |
pubs.publication-status | Accepted | en_NZ |
pubs.volume | 225 | en_NZ |
uow.identifier.article-no | 106532 | |