Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Grain growth and kinetics for nanocrystalline magnesium alloy produced by mechanical alloying

      Cao, Peng; Lu, Li; Lai, M. O.
      DOI
       10.1016/S0025-5408(01)00578-5
      Find in your library  
      Citation
      Export citation
      Cao, P., Lu, L. & Lai, M. O. (2001). Grain growth and kinetics for nanocrystalline magnesium alloy produced by mechanical alloying. Materials Research Bulletin, 36(5-6), 981- 988.
      Permanent Research Commons link: https://hdl.handle.net/10289/1404
      Abstract
      A study on the kinetics of grain growth of an Mg-12.1 wt%Cu alloy produced by mechanical alloying was carried out. The grain sizes of as-mechanically alloyed powder and of cold-compacted annealed powder were determined from the broadening of X-ray lines. The grain size deceases initially due to recrystallization and then increases gradually, and finally ceases to reach an ultimate value regardless of annealing time. From isothermal anneals, the grain growth kinetics can be described by Dn − D0n = ct, where n (n = 5 to 8) is a constant essentially dependent on the annealing temperature. The activation energy for grain growth Q has been determined to be 118 kJ/mol, which is longer by 26 kJ/mol than that for pure magnesium. Second-phase intermetallic particle Mg2Cu produced during ball-milling influences not only on activation energy but also on exponent of the kinetic equation.
      Date
      2001
      Type
      Journal Article
      Publisher
      Pergamon Press
      Collections
      • Science and Engineering Papers [3121]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement