Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Special Issue: Novel Advances and Approaches in Biomedical Materials Based on Calcium Phosphates [Editorial]

      Mucalo, Michael R.
      Thumbnail
      Files
      Special Issue Novel Advances and Approaches in Biomedical Materials Based on Calcium Phosphates.pdf
      Published version, 181.0Kb
      DOI
       10.3390/ma12030405
      Find in your library  
      Citation
      Export citation
      Mucalo, M. R. (2019). Special Issue: Novel Advances and Approaches in Biomedical Materials Based on Calcium Phosphates [Editorial]. Materials, 12(3). https://doi.org/10.3390/ma12030405
      Permanent Research Commons link: https://hdl.handle.net/10289/14065
      Abstract
      Research on calcium phosphate use in the development and clinical application of biomedical materials is a diverse activity and is genuinely interdisciplinary, with much work leading to innovative solutions for improvement of health outcomes. This Special Issue aimed to summarize current advances in this area. The nine papers published cover a wide spectrum of topical areas, such as (1) remineralisation pastes for decalcified teeth, (2) use of statins to enhance bone formation, (3) how dolomitic marble and seashells can be processed into bioceramic materials, (4) relationships between the roughness of calcium phosphate surfaces and surface charge with the effect on human MRC osteogenic differentiation and maturation being investigated, (5) rheological and mechanical properties of a novel injectable bone substitute, (6) improving strength of bone cements by incorporating reinforcing chemically modified fibres, (7) using adipose stem cells to stimulate osteogenesis, osteoinduction, and angiogenesis on calcium phosphates, (8) using glow discharge treatments to remove surface contaminants from biomedical materials to enhance cell attachment and improve bone generation, and (9) a review on how classically brittle hydroxyapatite based scaffolds can be improved by making fibre-hydroxyapatite composites, with detailed analysis of ceramic crack propagation mechanisms and its prevention via fibre incorporation in the hydroxyapatite.
      Date
      2019
      Type
      Journal Article
      Publisher
      MDPI
      Rights
      This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
      Collections
      • Science and Engineering Papers [3124]
      Show full item record  

      Usage

      Downloads, last 12 months
      43
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement