Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Mining attribute evolution rules in dynamic attributed graphs

      Fournier-Viger, Philippe; He, Ganghuan; Lin, Jerry Chun-Wei; Gomes, Heitor Murilo
      Files
      2020_DAWAK_Attribute_Evolution_rules.pdf
      Accepted version, 759.3Kb
      This file wil be publicly accessible from 2022-09-12
      Request a copy
      DOI
       10.1007/978-3-030-59065-9_14
      Find in your library  
      Citation
      Export citation
      Fournier-Viger, P., He, G., Lin, J. C.-W., & Gomes, H. M. (2020). Mining attribute evolution rules in dynamic attributed graphs. In M. Song, I.-Y. Song, G. Kotsis, A. M. Tjoa, & I. Khalil (Eds.), Proceeding of 22nd International Conference on Big Data Analytics and Knowledge Discovery (DaWaK 2020) (Vol. LNCS 12393, pp. 167–182). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-030-59065-9_14
      Permanent Research Commons link: https://hdl.handle.net/10289/14107
      Abstract
      A dynamic attributed graph is a graph that changes over time and where each vertex is described using multiple continuous attributes. Such graphs are found in numerous domains, e.g., social network analysis. Several studies have been done on discovering patterns in dynamic attributed graphs to reveal how attribute(s) change over time. However, many algorithms restrict all attribute values in a pattern to follow the same trend (e.g. increase) and the set of vertices in a pattern to be fixed, while others consider that a single vertex may influence its neighbors. As a result, these algorithms are unable to find complex patterns that show the influence of multiple vertices on many other vertices in terms of several attributes and different trends. This paper addresses this issue by proposing to discover a novel type of patterns called attribute evolution rules (AER). These rules indicate how changes of attribute values of multiple vertices may influence those of others with a high confidence. An efficient algorithm named AER-Miner is proposed to find these rules. Experiments on real data show AER-Miner is efficient and that AERs can provide interesting insights about dynamic attributed graphs.
      Date
      2020
      Type
      Conference Contribution
      Publisher
      Springer
      Rights
      This is a post-peer-review, pre-copyedit version of an article published in Big Data Analytics and Knowledge Discovery. The final authenticated version is available online at: http://dx.doi.org/10.1007/978-3-030-59065-9_14”
      Collections
      • Computing and Mathematical Sciences Papers [1391]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement