Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Condensation corrosion alters the oxygen and carbon isotope ratios of speleothem and limestone surfaces

      White, Jackson H.; Domínguez-Villar, David; Hartland, Adam
      Thumbnail
      Files
      1-s2.0-S2666277921000010-main.pdf
      Accepted version, 1.587Mb
      DOI
       10.1016/j.ringeo.2021.100008
      Link
       doi.org
      Find in your library  
      Citation
      Export citation
      White, J. H., Domínguez-Villar, D., & Hartland, A. (2021). Condensation corrosion alters the oxygen and carbon isotope ratios of speleothem and limestone surfaces. Results in Geochemistry, 100008–100008. https://doi.org/10.1016/j.ringeo.2021.100008
      Permanent Research Commons link: https://hdl.handle.net/10289/14157
      Abstract
      Condensation corrosion is a natural process which enhances the chemical weathering of limestone cave chambers and speleothems. We evaluated the use of carbonate tablets for detecting condensation corrosion in Glowworm Cave, New Zealand, using local limestone and speleothem as experimental substrates (herein tablets). Evidence for condensation corrosion was assessed via three methods: gravimetric (mass wasting), microscopic (surface pitting, recrystallization) and isotopic (δ¹³C and δ¹⁸O changes). Our results show little evidence of tablet mass loss throughout a 6-month deployment period. However, SEM imaging and isotope analysis (δ¹³C and δ¹⁸O) of the upper ∼50 μm layer of the tablets, suggest that condensation corrosion operates in the cave, especially in sectors affected by large diurnal microclimate variations.

      Most notably, condensation water altered the tablet surface δ¹³C and δ¹⁸O values. Small, positive shifts in surface δ¹³C and δ¹⁸O values are considered to reflect pure dissolution (where dissolution favours the removal of lighter isotopologues). In contrast, tablets that exhibited large positive shifts in δ¹³C in tandem with large negative shifts in δ¹⁸O values, are interpreted as showing calcite recrystallization and the inheritance of higher DIC δ¹³C values (¹³C fractionation by CO₂ degassing), lighter water δ¹⁸O values and/or kinetic fractionation of δ¹⁸O. This study therefore demonstrates that stable isotopes could be applied to detect paleoclimatic episodes of condensation corrosion in speleothems.
      Date
      2021
      Type
      Journal Article
      Publisher
      Elsevier BV
      Rights
      © 2021 Published by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/)
      Collections
      • Science and Engineering Papers [3086]
      Show full item record  

      Usage

      Downloads, last 12 months
      77
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement