Show simple item record  

dc.contributor.authorWilson, Marcus T.en_NZ
dc.contributor.authorMoezzi, Baharen_NZ
dc.contributor.authorRogasch, Nigel C.en_NZ
dc.date.accessioned2021-03-16T22:59:01Z
dc.date.available2021-03-16T22:59:01Z
dc.date.issued2021en_NZ
dc.identifier.citationWilson, M. T., Moezzi, B., & Rogasch, N. C. (2021). Modeling motor-evoked potentials from neural field simulations of transcranial magnetic stimulation. Clinical Neurophysiology, 132(2), 412–428. https://doi.org/10.1016/j.clinph.2020.10.032en
dc.identifier.issn1388-2457en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/14180
dc.description.abstractObjective To develop a population-based biophysical model of motor-evoked potentials (MEPs) following transcranial magnetic stimulation (TMS). Methods We combined an existing MEP model with population-based cortical modeling. Layer 2/3 excitatory and inhibitory neural populations, modeled with neural-field theory, are stimulated with TMS and feed layer 5 corticospinal neurons, which also couple directly but weakly to the TMS pulse. The layer 5 output controls mean motoneuron responses, which generate a series of single motor-unit action potentials that are summed to estimate a MEP. Results A MEP waveform was generated comparable to those observed experimentally. The model captured TMS phenomena including a sigmoidal input–output curve, common paired pulse effects (short interval intracortical inhibition, intracortical facilitation, long interval intracortical inhibition) including responses to pharmacological interventions, and a cortical silent period. Changes in MEP amplitude following theta burst paradigms were observed including variability in outcome direction. Conclusions The model reproduces effects seen in common TMS paradigms. Significance The model allows population-based modeling of changes in cortical dynamics due to TMS protocols to be assessed in terms of changes in MEPs, thus allowing a clear comparison between population-based modeling predictions and typical experimental outcome measures.
dc.format.mimetypeapplication/pdf
dc.language.isoenen_NZ
dc.publisherElsevieren_NZ
dc.rights© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectScience & Technologyen_NZ
dc.subjectLife Sciences & Biomedicineen_NZ
dc.subjectClinical Neurologyen_NZ
dc.subjectNeurosciencesen_NZ
dc.subjectNeurosciences & Neurologyen_NZ
dc.subjectMotor evoked potentialen_NZ
dc.subjectMEPen_NZ
dc.subjectTranscranial magnetic stimulationen_NZ
dc.subjectTMSen_NZ
dc.subjectCorticomotor systemen_NZ
dc.subjectCortical plasticityen_NZ
dc.subjectModelingen_NZ
dc.subjectNeural field theoryen_NZ
dc.subjectPaired-pulseen_NZ
dc.subjectrTMSen_NZ
dc.subjectCalcium dependent plasticityen_NZ
dc.subjectiTBSen_NZ
dc.subjectcTBSen_NZ
dc.subjectTheta burst stimulationen_NZ
dc.titleModeling motor-evoked potentials from neural field simulations of transcranial magnetic stimulationen_NZ
dc.typeJournal Article
dc.identifier.doi10.1016/j.clinph.2020.10.032en_NZ
dc.relation.isPartOfClinical Neurophysiologyen_NZ
pubs.begin-page412
pubs.elements-id259139
pubs.end-page428
pubs.issue2en_NZ
pubs.publication-statusPublisheden_NZ
pubs.volume132en_NZ
dc.identifier.eissn1872-8952en_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record