Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Unsupervised discretization using tree-based density estimation

      Schmidberger, Gabi; Frank, Eibe
      DOI
       10.1007/11564126_26
      Link
       www.springerlink.com
      Find in your library  
      Citation
      Export citation
      Schmidberger, G. & Frank, E. (2005). Unsupervised discretization using tree-based density estimation. In A. Jorge et al. (Eds), Proceedings of 9th European Conference on Principles and Practice of Knowledge Discovery in Databases, Porto, Portugal, October 3-7, 2005. (pp. 240-251). Berlin: Springer.
      Permanent Research Commons link: https://hdl.handle.net/10289/1444
      Abstract
      This paper presents an unsupervised discretization method that performs density estimation for univariate data. The subintervals that the discretization produces can be used as the bins of a histogram. Histograms are a very simple and broadly understood means for displaying data, and our method automatically adapts bin widths to the data. It uses the log-likelihood as the scoring function to select cut points and the cross-validated log-likelihood to select the number of intervals. We compare this method with equal-width discretization where we also select the number of bins using the cross-validated log-likelihood and with equal-frequency discretization.
      Date
      2005
      Type
      Conference Contribution
      Publisher
      Springer, Berlin
      Collections
      • Computing and Mathematical Sciences Papers [1454]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement