Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Decadal shoreline erosion and recovery of beaches in modified and natural estuaries

      Fellowes, Thomas E.; Vila-Concejo, Ana; Gallop, Shari L.; Schosberg, Ryan; de Staercke, Vincent; Largier, John L.
      Files
      1-s2.0-S0169555X21002920-main.pdf
      Accepted version, 4.009Mb
      This file wil be publicly accessible from 2023-10-01
      Request a copy
      DOI
       10.1016/j.geomorph.2021.107884
      Find in your library  
      Citation
      Export citation
      Fellowes, T. E., Vila-Concejo, A., Gallop, S. L., Schosberg, R., de Staercke, V., & Largier, J. L. (2021). Decadal shoreline erosion and recovery of beaches in modified and natural estuaries. Geomorphology, 107884–107884. https://doi.org/10.1016/j.geomorph.2021.107884
      Permanent Research Commons link: https://hdl.handle.net/10289/14518
      Abstract
      Sandy beaches in estuaries and bays (BEBs) are common landforms on the coasts of many major cities. They exist under a wide range of settings and their morphology is controlled by their distance from the estuary/bay entrance, exposure to different types of waves (e.g., ocean swells vs locally generated wind waves), proximity to flood-tide delta/shoals, and anthropogenic interventions (e.g., dredging, groynes). Both swell waves propagating into estuaries/bays and locally generated wind waves can erode BEBs. However, more understanding of BEB storm erosion and recovery over decadal timescales is needed, as they typically respond slower than open coast beaches. Here we present decadal shoreline behaviours of nine BEBs from two estuarine systems in SE Australia are presented in this study, using 76 years of aerial imagery (1941–2017). We quantify and compare decadal behaviour between beaches, developing a new typology of BEBs based on shoreline evolution. We identify four decadal behaviours: prograding, quasi-stable, retreating and storm relict – and assess the influence of flood-tide deltas, river mouths, distance from the ocean entrance, and anthropogenic interventions. Swell-exposed BEBs near the entrance are quasi-stable and recover after storms at rates comparable with open coast beaches (<3 years). In contrast, BEBs further from the entrance and those with less swell exposure, have slower recovery timescales (3–15 years) and will only be quasi-stable if storms are sufficiently infrequent. Thus, long-term behaviour is controlled by storm return timescales. Prograding BEBs are typically far from the entrance, where fluvial and tidal processes dominate and erosion events due to wind waves are less pronounced. Whether BEBs recover (quasi-stable), partially recover between storms (retreating) or never recover (storm relict) relates to storm frequency, recovery rates and proximity to sediment sources and sinks (e.g., dredge sites, flood-tide deltas, tidal channels) and anthropogenic interventions. Findings will help to better understand and manage BEB shorelines in major cities.
      Date
      2021
      Type
      Journal Article
      Publisher
      Elsevier BV
      Rights
      © 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/
      Collections
      • Science and Engineering Papers [3124]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement