Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Theses
      • Higher Degree Theses
      • View Item
      •   Research Commons
      • University of Waikato Theses
      • Higher Degree Theses
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Synthesis and properties of some doped lithium transition-metal phosphates

      Butt, Garrett Phillip
      Thumbnail
      Files
      thesis.pdf
      47.59Mb
      Permanent link to Research Commons version
      https://hdl.handle.net/10289/14790
      Abstract
      Four structurally related materials; LiNiPO₄, LiCoPO₄, Li₃Fe₂(PO₄)₃ and Li₃V₂(PO₄)₃, were synthesised, characterised and evaluated as potential cathode materials for lithium secondary batteries.

      The materials were synthesized using mainly solid-state techniques. Structural characterisation was performed using powder XRD with Rietveld refinement and Raman spectroscopy. Results showed that the pure forms of LiNiPO₄, LiCoPO₄ and Li₃Fe₂(PO₄)₃ could be synthesised in air at various temperatures. Li₃V₂(PO₄)₃ required a reducing atmosphere of 2%H₂/98%N₂ to achieve phase purity. Attempts were made to substitute all four materials with aliovalent dopants. Li₃Fe₂(PO₄)₃ and Li₃V₂(PO₄)₃ underwent a phase change depending on dopant content to a higher ionic conducting phase.

      AC impedance spectroscopy was used to determine conductivity of the materials. In general the phosphates are poor conductors. There was a significant increase in conductivity when substituting the transition metal Ti⁴⁺ for M³⁺ in Li₃Fe₂(PO₄)₃ and Li₃V₂(PO₄)₃, and V³⁺ for Co²⁺ in LiCoPO₄.

      The four materials and their highest conducting doped analogues were evaluated as cathodes in coin type lithium cells to determine their viability in Li secondary batteries. LiCoPO₄ showed a first discharge capacity of 130 mAh/g at 4.6V, but could be cycled over only a limited number of charge-discharge cycles owing to electrolyte instability at the high oxidation potentials (>5V) required for full charge. LiNiPO₄ could not be charged at all to accessible voltages. Ti doped Li₃Fe₂(PO₄)₃ had a relatively low discharge capacity of 60 mAh/g. Li₃V₂(PO₄)₃ and Ti doped Li₃V₂(PO₄)₃ showed a discharge capacity of 130 and 110 mAh/g respectively, although the Ti doped Li₃V₂(PO₄)₃ showed better cycling characteristics. Therefore, although aliovalent doping could increase the total conductivity of the phosphate materials, the accessible capacities of these materials remained limited.
      Date
      2000
      Type
      Thesis
      Degree Name
      Doctor of Philosophy (PhD)
      Supervisors
      Sammes, Nigel
      Swan, Janis E.
      Publisher
      The University of Waikato
      Rights
      All items in Research Commons are provided for private study and research purposes and are protected by copyright with all rights reserved unless otherwise indicated.
      Collections
      • Higher Degree Theses [1714]
      Show full item record  

      Usage

      Downloads, last 12 months
      16
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement