Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Health, Sport and Human Performance
      • Health, Sport and Human Performance Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Health, Sport and Human Performance
      • Health, Sport and Human Performance Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Anthropogenic impacts on the Glowworm Cave, Waitomo, New Zealand: a microclimate management approach

      Hendy, Chris H.; Merritt, David J.; Corkill, Shannon
      Thumbnail
      Files
      51_1_5_Hendy etal.pdf
      Published version, 2.240Mb
      DOI
       10.5038/1827-806x.51.1.2411
      Find in your library  
      Permanent link to Research Commons version
      https://hdl.handle.net/10289/14820
      Abstract
      Waitomo Glowworm Cave is a highly visited cave where the highlight is viewing the bioluminescence display of a large colony of glowworms. The visitation levels result in the build-up of anthropogenic CO₂, to the extent that it could cause corrosion of speleothems. The cave experiences chimney-effect ventilation with air flowing either upward or downward through the main cave chambers depending on air density differences between the cave and the outside environment. Lack of airflow leads to CO₂ build-up; however, unrestricted airflow can draw in cool, dry air which is harmful to the glowworms. Consequently, airflow is managed by controlling the opening and closing of a door that seals the upper-most entrance, preventing ventilation under drying conditions and promoting ventilation when it is necessary to clear CO₂ and when inflowing air has high relative humidity. A network of microclimate sensors in the cave allows prediction and management of the ventilation pattern. Management leads to asymmetric airflow through the year, which has a flow-on effect on cave temperature. Microclimate monitoring supports the current management practices that use door control to enhance cave ventilation when people are in the cave. Suppressing airflow, especially in winter, reduces the introduction of dry air.
      Date
      2022
      Type
      Journal Article
      Publisher
      University of South Florida Libraries
      Rights
      The author’s rights are protected under a Creative Commons AttributionNonCommercial 4.0 International (CC BY-NC 4.0) license.
      Collections
      • Health, Sport and Human Performance Papers [125]
      Show full item record  

      Usage

      Downloads, last 12 months
      67
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement