Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Weka: A machine learning workbench for data mining

      Frank, Eibe; Hall, Mark A.; Holmes, Geoffrey; Kirkby, Richard Brendon; Pfahringer, Bernhard; Witten, Ian H.
      Thumbnail
      Files
      Weka A machine learning workbench for data mining.pdf
      279.8Kb
      DOI
       10.1007/0-387-25465-X_62
      Find in your library  
      Citation
      Export citation
      Frank, E., Hall, M.A., Holmes, G., Kirkby, R., Pfahringer, B., Witten, I.H.(2005). Weka: A machine learning workbench for data mining. In O. Maimon & L. Rokach(Eds), Data Mining and Knowledge Discovery Handbook: A Complete Guide for Practitioners and Researchers(pp. 1305-1314). Berlin: Springer.
      Permanent Research Commons link: https://hdl.handle.net/10289/1497
      Abstract
      The Weka workbench is an organized collection of state-of-the-art machine learning algorithms and data preprocessing tools. The basic way of interacting with these methods is by invoking them from the command line. However, convenient interactive graphical user interfaces are provided for data exploration, for setting up large-scale experiments on distributed computing platforms, and for designing configurations for streamed data processing. These interfaces constitute an advanced environment for experimental data mining. The system is written in Java and distributed under the terms of the GNU General Public License.
      Date
      2005
      Type
      Chapter in Book
      Publisher
      Springer
      Rights
      The article has been published in the book: Data Mining and Knowledge Discovery Handbook. © Springer, Berlin. Used with permission. The book is available at: http://www.springer.com/978-0-387-24435-8
      Collections
      • Computing and Mathematical Sciences Papers [1455]
      Show full item record  

      Usage

      Downloads, last 12 months
      542
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement