Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      The Trichoptera barcode initiative: a strategy for generating a species-level Tree of Life

      Zhou, Xin; Frandsen, Paul B.; Holzenthal, Ralph W.; Beet, Clare R.; Bennett, Kristi R.; Blahnik, Roger J.; Bonada, Nuria; Cartwright, David; Chuluunbat, Suvdtsetseg; Cocks, Graeme V.; Collins, Gemma E.; deWaard, Jeremy; Dean, John; Flint, Oliver S.; Hausmann, Axel; Hendrich, Lars; Hess, Monika; Hogg, Ian D.; Kondratieff, Boris C.; Malicky, Hans; Milton, Megan A.; Moriniere, Jerome; Morse, John C.; Mwangi, Francois Ngera; Pauls, Steffen U.; Razo Gonzalez, Maria; Rinne, Aki; Robinson, Jason L.; Salokannel, Juha; Shackleton, Michael; Smith, Brian; Stamatakis, Alexandros; StClair, Ros; Thomas, Jessica A.; Zamora-Munoz, Carmen; Ziesmann, Tanja; Kjer, Karl M.
      Thumbnail
      Files
      Zhou et al. 2016.pdf
      Published version, 1.118Mb
      DOI
       10.1098/rstb.2016.0025
      Find in your library  
      Permanent link to Research Commons version
      https://hdl.handle.net/10289/15159
      Abstract
      DNA barcoding was intended as a means to provide species-level identifications through associating DNA sequences from unknown specimens to those from curated reference specimens. Although barcodes were not designed for phylogenetics, they can be beneficial to the completion of the Tree of Life. The barcode database for Trichoptera is relatively comprehensive, with data from every family, approximately two-thirds of the genera, and one-third of the described species. Most Trichoptera, as with most of life's species, have never been subjected to any formal phylogenetic analysis. Here, we present a phylogeny with over 16 000 unique haplotypes as a working hypothesis that can be updated as our estimates improve. We suggest a strategy of implementing constrained tree searches, which allow larger datasets to dictate the backbone phylogeny, while the barcode data fill out the tips of the tree. We also discuss how this phylogeny could be used to focus taxonomic attention on ambiguous species boundaries and hidden biodiversity. We suggest that systematists continue to differentiate between ‘Barcode Index Numbers’ (BINs) and ‘species’ that have been formally described. Each has utility, but they are not synonyms. We highlight examples of integrative taxonomy, using both barcodes and morphology for species description.

      This article is part of the themed issue ‘From DNA barcodes to biomes’.
      Date
      2016
      Type
      Journal Article
      Publisher
      Royal Society Publishing
      Rights
      © 2016 The Authors.

      Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
      Collections
      • Science and Engineering Papers [3124]
      Show full item record  

      Usage

      Downloads, last 12 months
      71
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement