Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Showcasing the TAIAO project: providing resources for machine learning from images of New Zealand's natural environment

      Lim, Nick Jin Sean; Bifet, Albert; Bull, Dainel; Frank, Eibe; Jia, Yunzhe; Montiel, Jacob; Pfahringer, Bernhard
      Files
      TAIAO_datasets_paper_Revision.pdf
      Accepted version, 2.922Mb
      This file wil be publicly accessible from 2023-09-20
      Request a copy
      DOI
       10.1080/03036758.2022.2118321
      Find in your library  
      Permanent link to Research Commons version
      https://hdl.handle.net/10289/15309
      Abstract
      Proper management of the earth's natural resources is imperative to combat further degradation of the natural environment. However, the environmental datasets necessary for informed resource planning and conservation can be costly to collect and annotate. Consequently, there is a lack of publicly available datasets, particularly annotated image datasets relevant for environmental conservation, that can be used for the evaluation of machine learning algorithms to determine their applicability in real-world scenarios. To address this, the Time-evolving Data Science and Artificial Intelligence for Advanced Open Environmental Science (TAIAO) project in New Zealand aims to provide a collection of datasets and accompanying example notebooks for their analysis. This paper showcases three New Zealand-based annotated image datasets that form part of the collection. The first dataset contains annotated images of various predator species, mainly small invasive mammals, taken using low-light camera traps predominantly at night. The second provides aerial photography of the Waikato region in New Zealand, in which stands of Kahikatea (a native New Zealand tree) have been marked up using manual segmentation. The third is a dataset containing orthorectified high-resolution aerial photography, paired with satellite imagery taken by Sentinel-2. Additionally, the TAIAO web platform also contains a collated list of other datasets provided and licensed by our data partners that may be of interest to other researchers.
      Date
      2022
      Type
      Journal Article
      Publisher
      Informa UK Limited
      Rights
      This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of the Royal Society of New Zealand on September 19, 2022, available at: http://www.tandfonline.com/10.1080/03036758.2022.2118321.
      Collections
      • Computing and Mathematical Sciences Papers [1455]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement