Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Extracting remotely sensed water quality parameters from shallow intertidal estuaries

      Shao, Zhanchao; Bryan, Karin R.; Lehmann, Moritz K.; Pilditch, Conrad A.
      Thumbnail
      Files
      ShaoEtAl_2023_remote sensing in estuaries.pdf
      Published version, 7.597Mb
      DOI
       10.3390/rs15010011
      Find in your library  
      Permanent link to Research Commons version
      https://hdl.handle.net/10289/15499
      Abstract
      Sentinel-2 imagery is potentially ideal for providing a rapid assessment of the ecological condition of estuarine water due to its high temporal and spatial resolution and coverage. However, for optically shallow waters, the problem of isolating the effect of seabed reflectance from the influence of water properties makes it difficult to use the observed surface reflectance to monitor water quality. In this study, we adopt a methodology based on Lyzenga’s model to estimate water quality properties such as the dominant wavelength and diffuse attenuation coefficient (Kd) of shallow estuarine waters. Lyzenga models the observed reflectance (R) using four parameters: total water depth (z), sea-bed reflectance (Rb), water reflectance (Rw) and Kd. If Rb is known a priori and multiple observations of R are available from different total water depths, we show that Lyzenga’s model can be used to estimate the values of the remaining two parameters, Kd and Rw. Observations of R from different water depths can either be taken from the same image at different proximal locations in the estuary (“spatial method”) or from the same pixel observed at different tidal stages (“temporal method”), both assuming homogeneous seabed and water reflectance properties. Tests in our case study estuary show that Kd and Rw can be estimated at water depths less than 6.4 m. We also show that the proximity restriction for the reflectance correction with the temporal method limits outcomes to monthly or seasonal resolution, and the correction with the spatial method performs best at a spatial resolution of 60 m. The Kd extracted from the blue band correlates well with the observed Kd for photosynthetically active radiation (PAR) (r2 = 0.66) (although the relationship is likely to be estuary-specific). The methodology provides a foundation for future work assessing rates of primary production in shallow estuaries on large scales.
      Date
      2023-01-01
      Type
      Journal Article
      Rights
      © 2022 by the Authors. This work is licensed under a CC BY 4.0 license.
      Collections
      • Science and Engineering Papers [3124]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement