Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Overview of sensor technologies used for 3D localization of asparagus spears for robotic harvesting

      Peebles, Matthew Christopher Scott; Lim, Shen Hin; Duke, Mike; Au, Chi Kit
      Thumbnail
      Files
      AMM.884.77.pdf
      Published version, 2.938Mb
      DOI
       10.4028/www.scientific.net/AMM.884.77
      Find in your library  
      Permanent link to Research Commons version
      https://hdl.handle.net/10289/15614
      Abstract
      Advances in agricultural automation, coupled with a general decline of available labour hasgenerated interest in automated harvesting of various crops. Paramount to the success of such systemsis the development of accurate, robust detection technologies and localization strategies. This paperpresents an overview of sensor technologies used in the detection and localization of green aspara-gus spears for robotic harvesting. Tactile, photoelectric, machine vision and time-of-flight sensors areinvestigated and their applicability for use in robotic asparagus harvesting is evaluated. Investigationof previous asparagus harvesting devices has revealed that no such device has yet achieved commer-cial viability. It was identified that this is likely due to weaknesses in currently employed detectiontechnologies, namely slow response times, high sensitivity to changes in ambient lighting conditionsand requirement for frequent manual calibration. Of the sensor technologies investigated it was foundthat time-of-flight cameras, such as the Microsoft Kinect V2 are the most feasible for the detectionof asparagus spears for robotic harvesting. It was concluded that further research would be conductedinto the application of such sensors into a commercially viable harvester.
      Date
      2018-08
      Type
      Journal Article
      Publisher
      Trans Tech Publications
      Rights
      © 2018 Trans Tech Publications, Switzerland. This is an open-access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).
      Collections
      • Science and Engineering Papers [3124]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement