Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Theses
      • Masters Degree Theses
      • View Item
      •   Research Commons
      • University of Waikato Theses
      • Masters Degree Theses
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Improving robustness of image recognition through artificial image augmentation

      Herbert, Callum
      Thumbnail
      Files
      thesis.pdf
      5.043Mb
      Permanent link to Research Commons version
      https://hdl.handle.net/10289/16129
      Abstract
      Deep learning based computer vision technologies can offer a number of advantages over manual labour inspection methods such as reduced operational costs and efficiency improvements. However, they are known to be unreliable in certain situations, especially when input images contain augmentations such as occlusion or distortion that computer vision models have not been trained on. While augmentations can be mitigated by controlling some situations, this is not always possible, especially in outdoor environments.

      To address this issue, one common approach is supplemental robustness training using augmented training data, which involves training models on images containing the expected augmentations to improve performance. However, this approach requires collection of a substantial volume of augmented images for each expected augmentation, making it time-consuming and costly depending on the difficulty involved in reproducing each augmentation.

      This thesis explores the viability of using artificially rendered augmentations on unaugmented images as a substitute for the manual collection and preparation of naturally augmented data for image recognition and object detection models. Specifically, this thesis recreates nine environmental augmentations that commonly occur within outdoor environments and evaluates their impact on model performance on three datasets.

      The findings of this thesis indicate potential for using artificially generated augmentations as substitutes for naturally occurring augmentations. It is anticipated that further research in this area will enable more reliable image recognition and object detection in less controllable environments, thus improving the results of these technologies in uncertain situations.
      Date
      2023
      Type
      Thesis
      Degree Name
      Master of Engineering (ME)
      Supervisors
      Bowen, Judy
      Ooi, Melanie
      Mayo, Michael
      Patros, Panos
      Publisher
      The University of Waikato
      Rights
      All items in Research Commons are provided for private study and research purposes and are protected by copyright with all rights reserved unless otherwise indicated.
      Collections
      • Masters Degree Theses [2496]
      Show full item record  

      Usage

      Downloads, last 12 months
      36
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement