Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      New Options for Hoeffding Trees

      Pfahringer, Bernhard; Holmes, Geoffrey; Kirkby, Richard Brendon
      DOI
       10.1007/978-3-540-76928-6_11
      Link
       www.springerlink.com
      Find in your library  
      Citation
      Export citation
      Pfahringer, B., Holmes, G. & Kirkby, R. (2007). New Options for Hoeffding Trees. In M.A. Orgun & J. Thornton(Eds), Proceedings of 20th Australian Joint Conference on Artificial Intelligence, Gold Coast, Australia, December 2-6, 2007. Berlin, Germany: Springer.
      Permanent Research Commons link: https://hdl.handle.net/10289/1761
      Abstract
      Hoeffding trees are state-of-the-art for processing high-speed data streams. Their ingenuity stems from updating sufficient statistics, only addressing growth when decisions can be made that are guaranteed to be almost identical to those that would be made by conventional batch learning methods. Despite this guarantee, decisions are still subject to limited lookahead and stability issues. In this paper we explore Hoeffding Option Trees, a regular Hoeffding tree containing additional option nodes that allow several tests to be applied, leading to multiple Hoeffding trees as separate paths. We show how to control tree growth in order to generate a mixture of paths, and empirically determine a reasonable number of paths. We then empirically evaluate a spectrum of Hoeffding tree variations: single trees, option trees and bagged trees. Finally, we investigate pruning. We show that on some datasets a pruned option tree can be smaller and more accurate than a single tree.
      Date
      2007
      Type
      Conference Contribution
      Publisher
      Springer
      Collections
      • Computing and Mathematical Sciences Papers [1455]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement