Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Linear law for the logarithms of the Riemann periods at simple critical zeta zeros

      Broughan, Kevin A.; Barnett, A. Ross
      Thumbnail
      Files
      Linear law for the logarithms of the Riemann.pdf
      403.6Kb
      DOI
       10.1090/S0025-5718-05-01803-X
      Link
       www.ams.org
      Find in your library  
      Citation
      Export citation
      Broughan, K. A. & Barnett, A. R.(2006). Linear law for the logarithms of the Riemann periods at simple critical zeta zeros. Mathematics of Computation. 75, 891-902.
      Permanent Research Commons link: https://hdl.handle.net/10289/1795
      Abstract
      Each simple zero 1/2 + iγn of the Riemann zeta function on the critical line with γn > 0 is a center for the flow s˙ = ξ(s) of the Riemann xi function with an associated period Tn. It is shown that, as γn →∞, log Tn ≥ π/4 γn + O(log γn).

      Numerical evaluation leads to the conjecture that this inequality can be replaced by an equality. Assuming the Riemann Hypothesis and a zeta zero separation conjecture γn+1 − γn≥ γn-θ for some exponent θ > 0, we obtain the upper bound log Tn ≤ γn2 + θ Assuming a weakened form of a conjecture of Gonek, giving a bound for the reciprocal of the derivative of zeta at each zero, we obtain the expected upper bound for the periods so, conditionally, log Tn = π/ 4 γn +O(log γn). Indeed, this linear relationship is equivalent to the given weakened conjecture, which implies the zero separation conjecture, provided the exponent is sufficiently large. The frequencies corresponding to the periods relate to natural eigenvalues for the Hilbert–Polya conjecture. They may provide a goal for those seeking a self-adjoint operator related to the Riemann hypothesis.
      Date
      2006
      Type
      Journal Article
      Publisher
      American Mathematical Society
      Rights
      First published in Mathematics of Computation in volume 75, pages 891-902, published by the American Mathematical Society. ©2006 American Mathematical Society.
      Collections
      • Computing and Mathematical Sciences Papers [1455]
      Show full item record  

      Usage

      Downloads, last 12 months
      57
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement