Show simple item record  

dc.contributor.authorBroughan, Kevin A.
dc.date.accessioned2009-02-17T03:15:00Z
dc.date.available2009-02-17T03:15:00Z
dc.date.issued2001
dc.identifier.citationBroughan, K.A. (2001). The gcd-sum function. Journal of Integer Sequences, 4, Article 01.2.2.en
dc.identifier.urihttps://hdl.handle.net/10289/2024
dc.description.abstractThe gcd-sum is an arithmetic function defined as the sum of the gcd's of the first n integers with n: g(n) = sumi=1..n (i, n). The function arises in deriving asymptotic estimates for a lattice point counting problem. The function is multiplicative, and has polynomial growth. Its Dirichlet series has a compact representation in terms of the Riemann zeta function. Asymptotic forms for values of partial sums of the Dirichlet series at real values are derived, including estimates for error terms.en
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.publisherUniversity of Waterlooen_NZ
dc.relation.urihttp://www.emis.de/journals/JIS/VOL4/BROUGHAN/gcdsum.htmlen
dc.rightsThis article has been published in Journal of Integer Sequences. Copyright © 2001 Kevin A. Broughan.en
dc.subjectmathematicsen
dc.titleThe gcd-sum functionen
dc.typeJournal Articleen
dc.relation.isPartOfJournal of Integer Sequencesen_NZ
pubs.begin-page1en_NZ
pubs.elements-id27189
pubs.end-page19en_NZ
pubs.issue2en_NZ
pubs.volume4en_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record