dc.contributor.author | Broughan, Kevin A. | |
dc.contributor.author | Barnett, A. Ross | |
dc.date.accessioned | 2009-02-18T02:16:28Z | |
dc.date.available | 2009-02-18T02:16:28Z | |
dc.date.issued | 2009 | |
dc.identifier.citation | Broughan, K.A. & Barnett, A.R. (2009). On the subsequence of primes having prime subscripts. Journal of Integer Sequences, 12(2009), Article 09.2.3. | en |
dc.identifier.uri | https://hdl.handle.net/10289/2031 | |
dc.description.abstract | We explore the subsequence of primes with prime subscripts, (qn), and derive its density and estimates for its counting function. We obtain bounds for the weighted gaps between elements of the subsequence and show that for every positive integer m there is an integer arithmetic progression (an+b : n ∈ ℕ) with at least m of the (qn) satisfying qn = an+b. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | |
dc.publisher | University of Waterloo | en_NZ |
dc.relation.uri | http://www.emis.de/journals/JIS/VOL12/Broughan/broughan16.html | en |
dc.rights | This article has been published in Journal of Integer Sequences. © 2009. Kevin A. Broughan & A. Ross Barnett. | en |
dc.subject | prime-prime | en |
dc.subject | prime-prime number theorem | en |
dc.subject | prime-prime gaps | en |
dc.subject | prime-primes in progressions | en |
dc.title | On the subsequence of primes having prime subscripts | en |
dc.type | Journal Article | en |
dc.relation.isPartOf | Journal of Integer Sequences | en_NZ |
pubs.begin-page | 1 | en_NZ |
pubs.edition | Article 09.2.3 | en_NZ |
pubs.elements-id | 33640 | |
pubs.end-page | 12 | en_NZ |
pubs.issue | 2 | en_NZ |
pubs.volume | 12 | en_NZ |