Show simple item record  

dc.contributor.authorRicketts, Brian D.en_US
dc.contributor.authorNelson, Campbell S.en_US
dc.contributor.authorCaron, Vincenten_US
dc.date.accessioned2008-03-19T05:10:32Z
dc.date.available2007-05-15en_US
dc.date.available2008-03-19T05:10:32Z
dc.date.issued2004-12-01en_US
dc.identifier.citationRicketts, B. D., Caron, V. & Nelson, C. S. (2004). A fluid flow perspective on the diagenesis of Te Aute limestones. New Zealand Journal of Geology & Geophysics. 47(4), 823-838.en_US
dc.identifier.urihttps://hdl.handle.net/10289/206
dc.description.abstractPliocene cool-water, bioclastic Te Aute limestones in East Coast Basin, New Zealand, accumulated either in shelfal shoal areas or about structurally shallow growth fold structures in the tectonically active accretionary forearc prism. Up to five stages of carbonate cementation are recognised, based on cement sequence-stratigraphic concepts, that formed on the seafloor during exposure of the limestones before burial, during burial, uplift, and deformation. Two principal fluid types are identified--topography-driven meteoric fluids and compaction-driven fluids. We have developed conceptual and quantitative models that attempt to relate the physical characteristics of fluid flow to the cement paragenesis. In particular, we have simulated the effects of uplift of the axial ranges bordering East Coast Basin in terms of the degree of penetration of a meteoric wedge into the basin. The dynamics of meteoric flow changed dramatically during uplift over the last 2 m.y. such that the modelled extent of the meteoric wedge is at least 40 km across the basin, and the penetration depth 1500 m or more corresponding with measured freshwater intersections in some oil wells. Cement-fluid relationships include: (1) true marine cements that precipitated in areas remote from shallow freshwater lenses; (2) pre-compaction cements that formed in shallow freshwater lenses beneath limestone "islands"; (3) post-compaction cements derived from compaction-driven flow during burial; (4) early uplift-related fracture-fill cements formed during deformation of the accretionary prism and uplift of the axial ranges; and (5) late uplift-related cements associated with uplift into a shallow meteoric regime.en_US
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.publisherThe Royal Society of New Zealanden_NZ
dc.relation.urihttp://www.rsnz.org/publish/nzjgg/2004/058.phpen_US
dc.rightsThe final, definitive version of this article has been published in the Journal, New Zealand Journal of Geology & Geophysics, 47(4), (2004), (c) Royal Society of New Zealand at the Royal Society of New Zealand Journals Online webpage.en_US
dc.subjectdiagenesisen_US
dc.subjectcement sequenceen_US
dc.subjectmeteoric wedgeen_US
dc.subjecttopography-driven flowen_US
dc.subjectfreshwater lensen_US
dc.subjectcompactionen_US
dc.subjectmodelingen_US
dc.subjectTe Aute limestonesen_US
dc.subjectPliocene-Pleistoceneen_US
dc.subjectNew Zealanden_US
dc.titleA fluid flow perspective on the diagenesis of Te Aute limestonesen_US
dc.typeJournal Articleen_US
dc.identifier.doi10.1080/00288306.2004.9515091en_NZ
dc.relation.isPartOfNew Zealand Journal of Geology & Geophysicsen_NZ
pubs.begin-page823en_NZ
pubs.elements-id30425
pubs.end-page838en_NZ
pubs.issue4en_NZ
pubs.volume47en_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record