Show simple item record  

dc.contributor.authorGutlein, Martin
dc.contributor.authorFrank, Eibe
dc.contributor.authorHall, Mark A.
dc.contributor.authorKarwath, Andreas
dc.coverage.spatialConference held at Nashville, TN, USAen_NZ
dc.date.accessioned2009-06-24T23:21:06Z
dc.date.available2009-06-24T23:21:06Z
dc.date.issued2009
dc.identifier.citationGutlein, M., Frank, E., Hall, M. & Karwath, A. (2009). Large-scale attribute selection using wrappers. In Proceedings of IEEE Symposium on Computational Intelligence and Data Mining, March 30, 2009-April 2 2009 (pp. 332-339). Washington: IEEE Computer Society.en
dc.identifier.urihttps://hdl.handle.net/10289/2205
dc.description.abstractScheme-specific attribute selection with the wrapper and variants of forward selection is a popular attribute selection technique for classification that yields good results. However, it can run the risk of overfitting because of the extent of the search and the extensive use of internal cross-validation. Moreover, although wrapper evaluators tend to achieve superior accuracy compared to filters, they face a high computational cost. The problems of overfitting and high runtime occur in particular on high-dimensional datasets, like microarray data. We investigate Linear Forward Selection, a technique to reduce the number of attributes expansions in each forward selection step. Our experiments demonstrate that this approach is faster, finds smaller subsets and can even increase the accuracy compared to standard forward selection. We also investigate a variant that applies explicit subset size determination in forward selection to combat overfitting, where the search is forced to stop at a precomputed “optimal” subset size. We show that this technique reduces subset size while maintaining comparable accuracy.en
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.publisherIEEE Computer Societyen
dc.rightsThis is an author’s version of an article published in the Proceedings of IEEE Symposium on Computational Intelligence and Data Mining, March 30, 2009-April 2 2009. ©2009 IEEE Computer Society.en
dc.subjectcomputer scienceen
dc.subjectattribute selectionen
dc.subjectMachine learning
dc.titleLarge-scale attribute selection using wrappersen
dc.typeConference Contributionen
dc.identifier.doi10.1109/CIDM.2009.4938668
dc.relation.isPartOfProceedings of IEEE Symposium on Computational Intelligence and Data Miningen_NZ
pubs.begin-page332en_NZ
pubs.elements-id18692
pubs.end-page339en_NZ
pubs.finish-date2009-04-02en_NZ
pubs.start-date2009-03-30en_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record