Show simple item record  

dc.contributor.authorBrown, Jolene Maryen_NZ
dc.date.accessioned2007-02-22T15:13:50Z
dc.date.available2007-08-03T14:23:57Z
dc.date.issued2007en_NZ
dc.identifier.citationBrown, J. M. (2007). Equilibration of D-Glucaric Acid in Aqueous Solution (Thesis, Master of Science (MSc)). The University of Waikato, Hamilton, New Zealand. Retrieved from https://hdl.handle.net/10289/2452en
dc.identifier.urihttps://hdl.handle.net/10289/2452
dc.description.abstractAbstract The equilibrium of aqueous D-glucaric acid was investigated via Nuclear Magnetic Resonance (NMR) spectroscopy. The NMR spectra of all four species (D-glucaric acid, D-glucaro-1,4-lactone, D-glucaro-6,3- lactone and D-glucaro-1,4;6,3-lactone) were assigned. A 1H NMR spectroscopy method was developed to investigate the kinetics of equilibration of the starting species (D-glucaro-1,4-lactone and D-glucaro-1,4;6,3-dilactone). The equilibration was investigated under neutral conditions as well as conditions with increasing acidity. Each experiment set contained 50-100 1HNMR spectroscopy experiments that were run on the same sample using a program that built in delays. Dimethyl sulfoxide was used as an internal standard, and its signal size was used as a scale to report the changes in relative concentration of the four species throughout the experiment sets. Under neutral conditions D-glucaro-1,4-lactone is relatively stable against equilibration, while D-glucaro-1,4;6,3-dilactone is not. Under acidic conditions both compounds equilibrate within approximately 30,000 seconds. After equilibration under acidic conditions D-glucaric acid is the dominant species, while the relative concentration of D-glucaro-1,4-lactone is slightly higher than that of D-glucaro-6,3-lactone. The relative equilibrium concentration of D-glucaro-1,4;6,3-dilactone is low. A mechanism for the equilibration of aqueous D-glucaric acid was proposed and equilibrium constants and estimates of rate constants were derived from the experimental data. These rate constants were used in MATLAB simulations that were compared to the experimental data. MATLAB simulations were used to alter the rate constants to improve the fits between experimental data and simulated data.en_NZ
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.publisherThe University of Waikatoen_NZ
dc.rightsAll items in Research Commons are provided for private study and research purposes and are protected by copyright with all rights reserved unless otherwise indicated.
dc.subjectD-glucaric aciden_NZ
dc.subjectNMRen_NZ
dc.subjectEquilibrationen_NZ
dc.subjectLactoneen_NZ
dc.subjectMATLABen_NZ
dc.titleEquilibration of D-Glucaric Acid in Aqueous Solutionen_NZ
dc.typeThesisen_NZ
thesis.degree.disciplineChemistryen_NZ
thesis.degree.grantorUniversity of Waikatoen_NZ
thesis.degree.levelMasters
thesis.degree.nameMaster of Science (MSc)en_NZ
uow.date.accession2007-02-22T15:13:50Zen_NZ
uow.date.available2007-08-03T14:23:57Zen_NZ
uow.identifier.adthttp://adt.waikato.ac.nz/public/adt-uow20070222.151350en_NZ
uow.date.migrated2009-06-09T23:30:05Zen_NZ
pubs.place-of-publicationHamilton, New Zealanden_NZ


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record