Mass spectrometry-directed synthesis of early–late sulfide-bridged heterobimetallic complexes from the metalloligand [Pt₂(PPh₃)₄(μ-S)₂] and oxo compounds of vanadium(V), molybdenum(VI) and uranium(VI)
Citation
Export citationFong, S. W. A., Yap, W. T., Vittal, J. J., Henderson, W., & Hor, T. S. A. (2002). Mass spectrometry-directed synthesis of early–late sulfide-bridged heterobimetallic complexes from the metalloligand [Pt₂(PPh₃)₄(μ-S)₂] and oxo compounds of vanadium(V), molybdenum(VI) and uranium(VI). Journal of Chemical Society Dalton Transactions, 1826-1831.
Permanent Research Commons link: https://hdl.handle.net/10289/3388
Abstract
The metalloligand [Pt₂(PPh₃)₄(μ-S)₂] has been found to react with the transition metal oxo compounds, ammonium metavanadate, sodium molybdate, and the actinide complex uranyl nitrate to give sulfide-bridged heterobimetallic complexes [Pt₂(PPh₃)₄(μ₃-S)₂VO(OMe)₂]⁺, [Pt₂(PPh₃)₄(μ₃-S)₂MoO₂(OMe)]⁺, and [Pt₂(PPh₃)₄(μ₃-S)₂UO₂( ₂-NO₃)₂], respectively. Electrospray mass spectrometry (ESMS) was used to probe the reactivity of [Pt₂(PPh₃)₄(μ-S)₂] and thus identify likely targets for isolation and characterization. ESMS has also been used to investigate fragmentation pathways of the new species. No bimetallic species were detected with hydrated La(NO₃)₃or Th(NO₃)₄, or with the lanthanide shift reagent Eu(fod)₃ (fod = 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionate). X-Ray crystal structure determinations have been carried out on [Pt₂(PPh₃)₄(μ₃-S)₂VO(OMe)₂]⁺, 2, (as its hexafluorophosphate salt) and [Pt₂(PPh₃)₄(μ₃-S)₂UO₂( ₂-NO₃)₂], 4. The vanadium atom of 2 has a distorted square pyramidal geometry, while the uranium in 4 has the expected linear dioxo coordination geometry, with two bidentate nitrates and a bidentate {Pt₂S₂} moiety.
Date
2002Type
Publisher
Royal Society of Chemistry
Rights
This is an author’s accepted version of an article published in the Journal of Chemical Society Dalton Transactions. Used with permission.