Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Computing and Mathematical Sciences
      • Computing and Mathematical Sciences Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Superintegrability and higher order integrals for quantum systems

      Kalnins, Ernie G.; Kress, Jonathan M.; Miller, W., Jr.
      DOI
       10.1088/1751-8113/43/26/265205
      Link
       iopscience.iop.org
      Find in your library  
      Citation
      Export citation
      Kalnins, E.G., Kress, J.M. & Miller, W., Jr. (2010). Superintegrability and higher order integrals for quantum systems. Journal of Physics A: Mathematical and Theoretical, 43(26), Art. No. 265205.
      Permanent Research Commons link: https://hdl.handle.net/10289/4050
      Abstract
      We refine a method for finding a canonical form of symmetry operators of arbitrary order for the Schrödinger eigenvalue equation HΨ ≡ (Δ2 + V)Ψ = EΨ on any 2D Riemannian manifold, real or complex, that admits a separation of variables in some orthogonal coordinate system. The flat space equations with potentials V = α(x + iy)k − 1/(x − iy)k + 1 in Cartesian coordinates, and V = αr² + β/r²cos ²kθ + γ/r²sin ²kθ (the Tremblay, Turbiner and Winternitz system) in polar coordinates, have each been shown to be classically superintegrable for all rational numbers k. We apply the canonical operator method to give a constructive proof that each of these systems is also quantum superintegrable for all rational k. We develop the classical analog of the quantum canonical form for a symmetry. It is clear that our methods will generalize to other Hamiltonian systems.
      Date
      2010
      Type
      Journal Article
      Collections
      • Computing and Mathematical Sciences Papers [1454]
      Show full item record  

      Usage

       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement